The UK DCD Risk Score: Still no consensus on futility in DCD liver transplantation

To the Editor:
The UK DCD Risk Score, recently published in March 2018, stratifies controlled donation after circulatory death (cDCD) liver recipients according to 7 variables and aims to predict 1-year graft survival. Donor age >60 years, cold ischemia >6 hours, and recipient lab Model for End-stage Liver Disease score >25 are assigned 2 points each; donor body mass index >25, functional warm ischemia >20-30 minutes, and recipient age >60 years 3 points; functional warm ischemia >30 minutes 6 point and retransplantation 9 points. Scores of 0–5 are “low-risk” (estimated 1-year graft survival >95%), 6–10 “high-risk” (1-year graft survival >85%), and >10 “futile” (1-year graft survival <40%).

We have recently reported the Spanish experience with cDCD liver transplantation, including all grafts transplanted between 2012 and 2016 and comparing outcomes between grafts undergoing either post-mortem normothermic regional perfusion (NRP, n = 95) or super rapid recovery (SRR, n = 117). The median UK Score for cDCD livers transplanted in the study was 5 (interquartile range 3–6) with NRP and 5 (3–7) with SRR. Among cDCD livers transplanted with NRP, 70 were “low-risk” (74%), 22 “high-risk” (23%), and 3 “futile” (3%). When graft survival was stratified according to UK risk class, we observed 100% 1-year graft survival among livers in the “futile” group, 91% 1-year graft survival among livers in the “high-risk” group, and 87% 1-year graft survival among livers in the “low-risk” group (Fig. 1A). Among cDCD livers transplanted with SRR, 64 of the transplanted livers were classified as “low-risk” (55%), 48 “high-risk” (41%), and 5 “futile” (4%). When graft survival was analysed according to UK risk class among cDCD livers with SRR, the survival curves were virtually the same in all 3 groups, with 81%, 85%, and 80% 1-year graft survival rates, respectively (Fig. 1B).

Of note, the only graft that was lost in the “futile” group was secondarily to patient death due to early hepatocellular carcinoma recurrence in a “Milan in” recipient.

Aside from the fact that the use of post-mortem NRP led to significant improvements in cDCD liver graft survival in general, the UK Score still failed to accurately predict outcomes of livers undergoing standard preservation with SRR. In order to determine why this might be, one should consider i) the components of the score itself and ii) how cDCD liver transplantation practice patterns may have artificially minimized if not entirely eliminated the effects of certain important risk factors.

The UK Score aims to predict risk and futility in the context of cDCD liver transplantation, taking into account the fact that the initial warm ischemic injury makes these grafts more marginal than similar livers recovered through donation after brain death. However, 3 of the 7 variables considered – recipient lab model for end-stage liver disease and age and retransplantation – have nothing to do with the graft itself. According to the UK Score, a 61-year-old recipient undergoing retransplantation is a futile procedure, regardless of the relative marginality or not of the graft used. It is well known that results of retransplantation are inferior to those of primary liver transplantation, yet no one would consider retransplantation a universally futile venture. Results of transplantation for acute liver failure are also inferior to those of transplantation for other indications, in particular during the first year, yet this indication is not considered in the UK Score, very likely because cDCD livers are rarely – if ever – used for acute liver failure recipients.

This last fact raises another very important point: when there has been previous manipulation of the inputs, some of the most important risk factors may appear less important or...
not even appear at all in a final risk stratification score. The UK Score considers donor age, repeatedly cited as a risk factor for the development of ischemic-type biliary lesions and, consequently, graft loss,¹⁻³ to be less relevant in predicting 1-year graft survival than recipient age, which has never been identified in any prior study as significantly associated with cDCD liver transplant outcomes. Upon examination of the training and test populations used to formulate and validate the UK Score, it becomes clear, based on median ages of 49 and 34 years, respectively, that many livers from older cDCD donors were previously excluded during the donor evaluation/organ recovery stage. Consequently, when the UK Score was applied to the cDCD liver transplants performed in the aforementioned Spanish series, where the donor age was higher (median 56–57 years), it performed poorly regardless of the recovery method used.

Overall, our results indicate that the UK DCD Risk Score is not very useful for predicting outcomes after cDCD liver transplantation in our setting. While risk scores may be useful to stratify some groups of patients and guide clinical decisions, their utility may decline significantly when they are created using restricted populations and later applied to groups with distinct or broader characteristics.

Conflict of interest
The authors declare no conflicts of interest that pertain to this work.

Please refer to the accompanying ICMJE disclosure forms for further details.

Supplementary data
Supplementary data to this article can be found online at https://doi.org/10.1016/j.jhep.2019.01.004.

References

Amelia J. Hessheimer1
Elisabeth Coll2
Patricia Ruiz3
Mikel Gastaca1
José Ignacio Rivas4
Manuel Gómez4
Belinda Sánchez5
Julio Santoyo5
Pablo Ramírez6
Pascual Parrilla6
Luis Miguel Marín7
Miguel Ángel Gómez-Bravo7
Juan Carlos García-Valdecasas1
Javier López-Monclús8
Andrea Boscó9
Rafael López-Andújar9
Jilliam Fundora-Suárez10
Jesús Villar10
Álvaro García-Sesma11
Carlos Jiménez11
Gonzalo Rodríguez-Laiž12
Lara Lladó13
Juan Carlos Rodríguez14
Manuel Barrera15
Ramón Charco16
Jose Ángel López-Baena7
Javier Bricete18
Fernando Pardo19
Gerardo Blanco20
David Pacheco1
Beatriz Domínguez-Gil21
Víctor Sánchez Turrión8
Constantino Fondevila1,8••

1Department of General & Digestive Surgery, Institut de Malalties Digestives i Metabòliques (IMDiM), Hospital Clinic, CIBERehd, IDIBAPS, University of Barcelona, Spain
2Organización Nacional de Trasplantes, Madrid, Spain
3Hospital Universitario Cruces, Bilbao, Spain
4Complejo Hospitalario Universitario La Coruña, Spain
5Hospital Regional Universitario de Málaga, Spain
6Hospital Clínico Universitario Virgen de la Arrixaca (IMIB), Murcia, Spain
7Hospital Universitario Virgen del Rocio, Seville, Spain
8Hospital Universitario Puerta de Hierro, Majadahonda, Spain
9Hospital Universitario y Politécnico La Fe, Valencia, Spain
10Hospital Universitario Virgen de las Nieves, Granada, Spain
11Hospital Universitario 12 de Octubre, Madrid, Spain
12Department of General & Digestive Surgery, ISABIAL, Hospital General Universitario de Alicante, Spain
13Hospital Universitario de Bellvitge, Hospital de Llobregat, Spain
14Hospital Universitario Marquès de Valdecilla, Santander, Spain
15Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
16Hospital Universitario Vall d’Hebrón, Barcelona, Spain
17Hospital General Universitario Gregorio Marañón, Madrid, Spain
18Hospital Universitario Reina Sofía, Córdoba, Spain
19Clínica Universitaria de Navarra, Pamplona, Spain
20Hospital Universitario Infanta Cristina, Badajoz, Spain
21Hospital Universitario Río Hortega, Valladolid, Spain

*Corresponding author. Address: Department of General & Digestive Surgery, Hospital Clinic, University of Barcelona, C/ Villarroel 170, 08036 Barcelona, Spain. Tel.: +34 93 227 57 18; fax: +34 93 227 55 89.
E-mail address: cfonde@clinic.ub.es