Advertisement

Hepatocyte senescence predicts progression in non-alcohol-related fatty liver disease

Published:November 09, 2012DOI:https://doi.org/10.1016/j.jhep.2012.10.031

      Background & Aims

      Models of non-alcohol-related fatty liver disease (NAFLD) reveal features of accelerated ageing, such as impaired regeneration, and an increased risk of hepatocellular carcinoma. The relation between accelerated ageing, disease progression and clinical outcome has not been previously investigated and is the subject of the current study.

      Methods

      Liver sections from 70 patients with NAFLD (105 biopsies) and 60 controls were studied for telomere length, nuclear area, DNA damage and cell cycle phase markers, using quantitative fluorescent in situ hybridization and immunohistochemistry.

      Results

      Hepatocyte telomeres were shorter in NAFLD than controls (p <0.0001). Hepatocytes in NAFLD demonstrated lack of cell cycle progression beyond G1/S phase and high-level expression of p21, the universal cell cycle inhibitor (p = 0.001). γ-H2AX expression increased with steatosis (p = 0.01), indicating DNA damage, and was associated with shorter hepatocyte telomeres (p <0.0001). Hepatocyte p21 expression correlated with fibrosis stage and diabetes mellitus, independently (p <0.001 and p = 0.002, respectively). Further analysis revealed that an adverse liver-related outcome was strongly associated with higher hepatocyte p21 expression and greater hepatocyte nuclear area (p = 0.02 and p = 0.006), but not with telomere length. In paired biopsies, changes in hepatocyte p21 expression and nuclear area mirrored changes in fibrosis stage (p = 0.01 and p = 0.006, respectively).

      Conclusions

      These findings are consistent with hepatocyte senescence and permanent cell cycle arrest in NAFLD. Hepatocyte senescence correlated closely with fibrosis stage, diabetes mellitus, and clinical outcome. Hepatocyte p21 expression could be used as a prognostic marker and for stratification in clinical studies.

      Abbreviations:

      NAFLD (non-alcohol-related fatty liver), DDR (DNA damage response), γ-H2AX (phosphorylated histone H2AX), Q-FISH (quantitative fluorescent in situ hybridization), MCM (minichromosome maintenance protein), PH3 (phosphorylated histone 3), MFI (mean fluorescent intensity)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Hepatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • de Alwis N.M.
        • Day C.P.
        Non-alcoholic fatty liver disease: the mist gradually clears.
        J Hepatol. 2008; 48: S104-112
        • Neuschwander-Tetri B.A.
        • Caldwell S.H.
        Nonalcoholic steatohepatitis: summary of an AASLD Single Topic Conference.
        Hepatology. 2003; 37: 1202-1219
        • Torbenson M.
        • Yang S.Q.
        • Liu H.Z.
        • Huang J.
        • Gage W.
        • Diehl A.M.
        STAT-3 overexpression and p21 up-regulation accompany impaired regeneration of fatty livers.
        Am J Pathol. 2002; 161: 155-161
        • Behrns K.E.
        • Tsiotos G.G.
        • DeSouza N.F.
        • Krishna M.K.
        • Ludwig J.
        • Nagorney D.M.
        Hepatic steatosis as a potential risk factor for major hepatic resection.
        J Gastrointest Surg. 1998; 2: 292-298
        • D’Alessandro A.M.
        • Kalayoglu M.
        • Sollinger H.W.
        • Hoffmann R.M.
        • Reed A.
        • Knechtle S.J.
        • et al.
        The predictive value of donor liver biopsies for the development of primary nonfunction after orthotopic liver transplantation.
        Transplantation. 1991; 51: 157-163
        • Todo S.
        • Demetris A.J.
        • Makowka L.
        • Teperman L.
        • Podesta L.
        • Shaver T.
        • et al.
        Primary nonfunction of hepatic allografts with preexisting fatty infiltration.
        Transplantation. 1989; 47: 903-905
        • Paradis V.
        • Zalinski S.
        • Chelbi E.
        • Guedj N.
        • Degos F.
        • Vilgrain V.
        • et al.
        Hepatocellular carcinomas in patients with metabolic syndrome often develop without significant liver fibrosis: a pathological analysis.
        Hepatology. 2009; 49: 851-859
        • Collado M.
        • Blasco M.A.
        • Serrano M.
        Cellular senescence in cancer and aging.
        Cell. 2007; 130: 223-233
        • Kawanishi S.
        • Oikawa S.
        Mechanism of telomere shortening by oxidative stress.
        Ann N Y Acad Sci. 2004; 1019: 278-284
        • Saretzki G.
        • Von Zglinicki T.
        Replicative aging, telomeres, and oxidative stress.
        Ann N Y Acad Sci. 2002; 959: 24-29
        • von Zglinicki T.
        Oxidative stress shortens telomeres.
        Trends Biochem Sci. 2002; 27: 339-344
        • von Zglinicki T.
        Role of oxidative stress in telomere length regulation and replicative senescence.
        Ann N Y Acad Sci. 2000; 908: 99-110
        • Shiloh Y.
        The ATM-mediated DNA-damage response: taking shape.
        Trends Biochem Sci. 2006; 31: 402-410
        • d’Adda di Fagagna F.
        Living on a break: cellular senescence as a DNA-damage response.
        Nat Rev Cancer. 2008; 8: 512-522
        • Celeste A.
        • Petersen S.
        • Romanienko P.J.
        • Fernandez-Capetillo O.
        • Chen H.T.
        • Sedelnikova O.A.
        • et al.
        Genomic instability in mice lacking histone H2AX.
        Science. 2002; 296: 922-927
        • d’Adda di Fagagna F.
        • Reaper P.M.
        • Clay-Farrace L.
        • Fiegler H.
        • Carr P.
        • Von Zglinicki T.
        • et al.
        A DNA damage checkpoint response in telomere-initiated senescence.
        Nature. 2003; 426: 194-198
        • Ben-Porath I.
        • Weinberg R.A.
        The signals and pathways activating cellular senescence.
        Int J Biochem Cell Biol. 2005; 37: 961-976
        • Campisi J.
        • D’Adda di Fagagna F.
        Cellular senescence: when bad things happen to good cells.
        Nat Rev Mol Cell Biol. 2007; 8: 729-740
        • Gonzalez-Reimers E.
        • Brajin-Rodriguez M.M.
        • Batista-Lopez N.
        • Santolaria-Fernandez F.
        • Martinez-Riera A.
        • Essardas-Daryanani H.
        Hepatocyte and nuclear areas and fatty infiltration of the liver in chronic alcoholic liver disease.
        Drug Alcohol Depend. 1988; 22: 195-203
        • Nakajima T.
        • Moriguchi M.
        • Katagishi T.
        • Sekoguchi S.
        • Nishikawa T.
        • Takashima H.
        • et al.
        Premature telomere shortening and impaired regenerative response in hepatocytes of individuals with NAFLD.
        Liver Int. 2006; 2 6: 23-31
        • Nakajima T.
        • Nakashima T.
        • Okada Y.
        • Jo M.
        • Nishikawa T.
        • Mitsumoto Y.
        • et al.
        Nuclear size measurement is a simple method for the assessment of hepatocellular aging in non-alcoholic fatty liver disease: comparison with telomere-specific quantitative FISH and p21 immunohistochemistry.
        Pathol Int. 2010; 60: 175-183
        • Richardson M.M.
        • Jonsson J.R.
        • Powell E.E.
        • Brunt E.M.
        • Neuschwander-Tetri B.A.
        • Bhathal P.S.
        • et al.
        Progressive fibrosis in nonalcoholic steatohepatitis: association with altered regeneration and a ductular reaction.
        Gastroenterology. 2007; 133: 80-90
        • Verma S.
        • Tachtatzis P.
        • Penrhyn-Lowe S.
        • Scarpini C.
        • Jurk D.
        • Von Zglinicki T.
        • et al.
        Sustained telomere length in hepatocytes and cholangiocytes with increasing age in normal liver.
        Hepatology. 2012;
        • Ourliac-Garnier I.
        • Londono-Vallejo A.
        Telomere length analysis by quantitative fluorescent in situ hybridization (Q-FISH).
        Methods Mol Biol. 2011; 735: 21-31
        • Wiemann S.U.
        • Satyanarayana A.
        • Tsahuridu M.
        • Tillmann H.L.
        • Zender L.
        • Klempnauer J.
        • et al.
        Hepatocyte telomere shortening and senescence are general markers of human liver cirrhosis.
        FASEB J. 2002; 16: 935-942
        • Oikawa S.
        • Tada-Oikawa S.
        • Kawanishi S.
        Site-specific DNA damage at the GGG sequence by UVA involves acceleration of telomere shortening.
        Biochemistry. 2001; 40: 4763-4768
        • Bar-Or D.
        • Thomas G.W.
        • Rael L.T.
        • Lau E.P.
        • Winkler J.V.
        Asp-Ala-His-Lys (DAHK) inhibits copper-induced oxidative DNA double strand breaks and telomere shortening.
        Biochem Biophys Res Commun. 2001; 282: 356-360
        • Malhi H.
        • Gores G.J.
        Molecular mechanisms of lipotoxicity in nonalcoholic fatty liver disease.
        Semin Liver Dis. 2008; 28: 360-369
        • Sakaguchi S.
        • Takahashi S.
        • Sasaki T.
        • Kumagai T.
        • Nagata K.
        Progression of alcoholic and non-alcoholic steatohepatitis: common metabolic aspects of innate immune system and oxidative stress.
        Drug metabolism and pharmacokinetics. 2011; 26: 30-46
        • Abdelmalek M.
        • Ludwig J.
        • Lindor K.D.
        Two cases from the spectrum of nonalcoholic steatohepatitis.
        J Clin Gastroenterol. 1995; 20: 127-130
        • Powell E.E.
        • Cooksley W.G.
        • Hanson R.
        • Searle J.
        • Halliday J.W.
        • Powell L.W.
        The natural history of nonalcoholic steatohepatitis: a follow-up study of forty-two patients for up to 21 years.
        Hepatology. 1990; 11: 74-80
        • Caldwell S.H.
        • Oelsner D.H.
        • Iezzoni J.C.
        • Hespenheide E.E.
        • Battle E.H.
        • Driscoll C.J.
        Cryptogenic cirrhosis: clinical characterization and risk factors for underlying disease.
        Hepatology. 1999; 29: 664-669
        • Borel F.
        • Lacroix F.B.
        • Margolis R.L.
        Prolonged arrest of mammalian cells at the G1/S boundary results in permanent S phase stasis.
        J Cell Sci. 2002; 115: 2829-2838
        • Watanabe T.
        • Tanaka Y.
        Age-related alterations in the size of human hepatocytes. A study of mononuclear and binucleate cells.
        Virchows Arch B Cell Pathol Incl Mol Pathol. 1982; 39: 9-20
        • Schmucker D.L.
        Hepatocyte fine structure during maturation and senescence.
        J Electron Microsc Tech. 1990; 14: 106-125
        • Gregg S.Q.
        • Gutierrez V.
        • Rasile Robinson A.
        • Woodell T.
        • Nakao A.
        • Ross M.A.
        • et al.
        A mouse model of accelerated liver aging caused by a defect in DNA repair.
        Hepatology. 2012; 55: 609-621
        • Serste T.
        • Bourgeois N.
        Ageing and the liver.
        Acta Gastroenterol Belg. 2006; 69: 296-298
        • Choudhury A.R.
        • Ju Z.
        • Djojosubroto M.W.
        • Schienke A.
        • Lechel A.
        • Schaetzlein S.
        • et al.
        Cdkn1a deletion improves stem cell function and lifespan of mice with dysfunctional telomeres without accelerating cancer formation.
        Nat Genet. 2007; 39: 99-105

      Linked Article

      • Focus
        Journal of HepatologyVol. 58Issue 3