Advertisement
Research Article| Volume 72, ISSUE 5, P946-959, May 2020

IL-17 signaling in steatotic hepatocytes and macrophages promotes hepatocellular carcinoma in alcohol-related liver disease

Published:December 31, 2019DOI:https://doi.org/10.1016/j.jhep.2019.12.016

      Highlights

      • IL-17 promotes alcohol-induced hepatocellular carcinoma.
      • IL-17 regulates activation of macrophages.
      • IL-17 facilitates tumor necrosis factor/tumor necrosis factor receptor-mediated lipogenesis in alcohol-damaged hepatocytes.
      • IL-17 promotes lipogenesis via activation of caspase-2-SP1-SREBP1/2-DHCR7 pathway.
      • IL-17 signaling prevents TNFR1 exocytosis in steatotic hepatocytes.

      Background & Aims

      Chronic alcohol consumption is a leading risk factor for the development of hepatocellular carcinoma (HCC), which is associated with a marked increase in hepatic expression of pro-inflammatory IL-17A and its receptor IL-17RA.

      Methods

      Genetic deletion and pharmacological blocking were used to characterize the role of IL-17A/IL-17RA signaling in the pathogenesis of HCC in mouse models and human specimens.

      Results

      We demonstrate that the global deletion of the Il-17ra gene suppressed HCC in alcohol-fed diethylnitrosamine-challenged Il-17ra–/– and major urinary protein-urokinase-type plasminogen activator/Il-17ra–/– mice compared with wild-type mice. When the cell-specific role of IL-17RA signaling was examined, the development of HCC was decreased in both alcohol-fed Il-17raΔMΦ and Il-17raΔHep mice devoid of IL-17RA in myeloid cells and hepatocytes, but not in Il-17raΔHSC mice (deficient in IL-17RA in hepatic stellate cells). Deletion of Il-17ra in myeloid cells ameliorated tumorigenesis via suppression of pro-tumorigenic/inflammatory and pro-fibrogenic responses in alcohol-fed Il-17raΔMΦ mice. Remarkably, despite a normal inflammatory response, alcohol-fed Il-17raΔHep mice developed the fewest tumors (compared with Il-17raΔMΦ mice), with reduced steatosis and fibrosis. Steatotic IL-17RA-deficient hepatocytes downregulated the expression of Cxcl1 and other chemokines, exhibited a striking defect in tumor necrosis factor (TNF)/TNF receptor 1-dependent caspase-2-SREBP1/2-DHCR7-mediated cholesterol synthesis, and upregulated the production of antioxidant vitamin D3. The pharmacological blocking of IL-17A/Th-17 cells using anti-IL-12/IL-23 antibodies suppressed the progression of HCC (by 70%) in alcohol-fed mice, indicating that targeting IL-17 signaling might provide novel strategies for the treatment of alcohol-induced HCC.

      Conclusions

      Overall, IL-17A is a tumor-promoting cytokine, which critically regulates alcohol-induced hepatic steatosis, inflammation, fibrosis, and HCC.

      Lay summary

      IL-17A is a tumor-promoting cytokine, which critically regulates inflammatory responses in macrophages (Kupffer cells and bone-marrow-derived monocytes) and cholesterol synthesis in steatotic hepatocytes in an experimental model of alcohol-induced HCC. Therefore, IL-17A may be a potential therapeutic target for patients with alcohol-induced HCC.

      Graphical abstract

      Keywords

      Linked Article

      • Battling IL-17, the troublemaker in alcohol-induced hepatocellular carcinoma
        Journal of HepatologyVol. 72Issue 5
        • Preview
          Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide.1 The primary risk factors for HCC include chronic hepatitis B and C viral infections, non-alcoholic fatty liver disease (NAFLD) and alcohol-related liver diseases (ALD). While recent clinical advances have considerably improved the management of HBV/HCV-driven liver diseases, both NAFLD and ALD are expected to increase the global burden of HCC significantly.1 Though NAFLD and ALD share similar histological features, ALD is the main cause of liver-related mortality worldwide.
        • Full-Text
        • PDF
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Hepatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Morgan R.L.
        • Baack B.
        • Smith B.D.
        • Yartel A.
        • Pitasi M.
        • Falck-Ytter Y.
        Eradication of hepatitis C virus infection and the development of hepatocellular carcinoma: a meta-analysis of observational studies.
        Ann Intern Med. 2013; 158: 329-337
        • Gao B.
        • Bataller R.
        Alcoholic liver disease: pathogenesis and new therapeutic targets.
        Gastroenterology. 2011; 141: 1572-1585
        • Brandl K.
        • Hartmann P.
        • Jih L.J.
        • Pizzo D.P.
        • Argemi J.
        • Ventura-Cots M.
        • et al.
        Dysregulation of serum bile acids and FGF19 in alcoholic hepatitis.
        J Hepatol. 2018; 69: 396-405
        • Goossens N.
        • Hoshida Y.
        Is hepatocellular cancer the same disease in alcoholic and nonalcoholic fatty liver diseases?.
        Gastroenterology. 2016; 150: 1710-1717
        • Alexandrov L.B.
        Understanding the origins of human cancer.
        Science. 2015; 350: 1175
        • Schulze K.
        • Imbeaud S.
        • Letouzé E.
        • Alexandrov L.B.
        • Calderaro J.
        • Rebouissou S.
        • et al.
        Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets.
        Nat Genet. 2015; 47: 505-511
        • Farazi P.A.
        • DePinho R.A.
        Hepatocellular carcinoma pathogenesis: from genes to environment.
        Nat Rev Cancer. 2006; 6: 674-687
        • Grivennikov S.I.
        • Wang K.
        • Mucida D.
        • Stewart C.A.
        • Schnabl B.
        • Jauch D.
        • et al.
        Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth.
        Nature. 2012; 491: 254-258
        • Wang K.
        • Kim M.K.
        • Di Caro G.
        • Wong J.
        • Shalapour S.
        • Wan J.
        • et al.
        Interleukin-17 receptor a signaling in transformed enterocytes promotes early colorectal tumorigenesis.
        Immunity. 2014; 41: 1052-1063
        • Wilson M.S.
        • Madala S.K.
        • Ramalingam T.R.
        • Gochuico B.R.
        • Rosas I.O.
        • Cheever A.W.
        • et al.
        Bleomycin and IL-1beta-mediated pulmonary fibrosis is IL-17A dependent.
        J Exp Med. 2010; 207: 535-552
        • Meng F.
        • Wang K.
        • Aoyama T.
        • Grivennikov S.I.
        • Paik Y.
        • Scholten D.
        • et al.
        Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice.
        Gastroenterology. 2012; 143: 765-776.e3
        • Gomes A.L.
        • Teijeiro A.
        • Burén S.
        • Tummala K.S.
        • Yilmaz M.
        • Waisman A.
        • et al.
        Metabolic inflammation-associated IL-17A causes non-alcoholic steatohepatitis and hepatocellular carcinoma.
        Cancer Cell. 2016; 30: 161-175
        • Hammerich L.
        • Heymann F.
        • Tacke F.
        Role of IL-17 and Th17 cells in liver diseases.
        Clin Dev Immunol. 2011; 2011: 345803
        • Kolls J.K.
        • Linden A.
        Interleukin-17 family members and inflammation.
        Immunity. 2004; 21: 467-476
        • Osborne T.F.
        • Espenshade P.J.
        Evolutionary conservation and adaptation in the mechanism that regulates SREBP action: what a long, strange tRIP it's been.
        Genes Dev. 2009; 23: 2578-2591
        • Kim J.Y.
        • Garcia-Carbonell R.
        • Yamachika S.
        • Zhao P.
        • Dhar D.
        • Loomba R.
        • et al.
        ER stress drives lipogenesis and steatohepatitis via caspase-2 activation of S1P.
        Cell. 2018; 175: 133-145.e15
        • Shalapour S.
        • Lin X.J.
        • Bastian I.N.
        • Brain J.
        • Burt A.D.
        • Aksenov A.A.
        • et al.
        Inflammation-induced IgA+ cells dismantle anti-liver cancer immunity.
        Nature. 2017; 551: 340-345
        • Ye P.
        • Rodriguez F.H.
        • Kanaly S.
        • Stocking K.L.
        • Schurr J.
        • Schwarzenberger P.
        • et al.
        Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense.
        J Exp Med. 2001; 194: 519-527
        • Weglarz T.C.
        • Degen J.L.
        • Sandgren E.P.
        Hepatocyte transplantation into diseased mouse liver. Kinetics of parenchymal repopulation and identification of the proliferative capacity of tetraploid and octaploid hepatocytes.
        Am J Pathol. 2000; 157: 1963-1974
        • Mederacke I.
        • Hsu C.C.
        • Troeger J.S.
        • Huebener P.
        • Mu X.
        • Dapito D.H.
        • et al.
        Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology.
        Nat Commun. 2013; 4: 2823
        • Brandon-Warner E.
        • Walling T.L.
        • Schrum L.W.
        • McKillop I.H.
        Chronic ethanol feeding accelerates hepatocellular carcinoma progression in a sex-dependent manner in a mouse model of hepatocarcinogenesis.
        Alcohol Clin Exp Res. 2012; 36: 641-653
        • Lazaro R.
        • Wu R.
        • Lee S.
        • Zhu N.L.
        • Chen C.L.
        • French S.W.
        • et al.
        Osteopontin deficiency does not prevent but promotes alcoholic neutrophilic hepatitis in mice.
        Hepatology. 2015; 61: 129-140
        • Quehenberger O.
        • Armando A.M.
        • Brown A.H.
        • Milne S.B.
        • Myers D.S.
        • Merrill A.H.
        • et al.
        Lipidomics reveals a remarkable diversity of lipids in human plasma.
        J Lipid Res. 2010; 51: 3299-3305
        • Reich K.
        • Langley R.G.
        • Papp K.A.
        • Ortonne J.P.
        • Unnebrink K.
        • Kaul M.
        • et al.
        A 52-week trial comparing briakinumab with methotrexate in patients with psoriasis.
        N Engl J Med. 2011; 365: 1586-1596
        • Boland M.R.
        • Tatonetti N.P.
        Investigation of 7-dehydrocholesterol reductase pathway to elucidate off-target prenatal effects of pharmaceuticals: a systematic review.
        Pharmacogenomics J. 2016; 16: 411-429
        • Ikonen E.
        Cellular cholesterol trafficking and compartmentalization.
        Nat Rev Mol Cell Biol. 2008; 9: 125-138
        • Chanthaphavong R.S.
        • Loughran P.A.
        • Lee T.Y.
        • Scott M.J.
        • Billiar T.R.
        A role for cGMP in inducible nitric-oxide synthase (iNOS)-induced tumor necrosis factor (TNF) α-converting enzyme (TACE/ADAM17) activation, translocation, and TNF receptor 1 (TNFR1) shedding in hepatocytes.
        J Biol Chem. 2012; 287: 35887-35898
        • Hawari F.I.
        • Rouhani F.N.
        • Cui X.
        • Yui Z.X.
        • Buckley C.
        • Kaler M.
        • et al.
        Release of full-length 55-kDa TNF receptor 1 in exosome-like vesicles: a mechanism for generation of soluble cytokine receptors.
        Proc Natl Acad Sci U S A. 2004; 101: 1297-1302
        • Lippincott-Schwartz J.
        • Yuan L.C.
        • Bonifacino J.S.
        • Klausner R.D.
        Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin A: evidence for membrane cycling from Golgi to ER.
        Cell. 1989; 56: 801-813
        • Cui X.
        • Hawari F.
        • Alsaaty S.
        • Lawrence M.
        • Combs C.A.
        • Geng W.
        • et al.
        Identification of ARTS-1 as a novel TNFR1 binding protein that promotes TNFR1 ectodomain shedding.
        J Clin Invest. 2002; 110: 515-526
        • Giles D.A.
        • Moreno-Fernandez M.E.
        • Stankiewicz T.E.
        • Graspeuntner S.
        • Cappelletti M.
        • Wu D.
        • et al.
        Thermoneutral housing exacerbates nonalcoholic fatty liver disease in mice and allows for sex-independent disease modeling.
        Nat Med. 2017; 23: 829-838
        • Kim J.H.
        • Lee J.N.
        • Paik Y.K.
        Cholesterol biosynthesis from lanosterol. A concerted role for Sp1 and NF-Y-binding sites for sterol-mediated regulation of rat 7-dehydrocholesterol reductase gene expression.
        J Biol Chem. 2001; 276: 18153-18160
        • Moebius F.F.
        • Fitzky B.U.
        • Lee J.N.
        • Paik Y.K.
        • Glossmann H.
        Molecular cloning and expression of the human delta7-sterol reductase.
        Proc Natl Acad Sci U S A. 1998; 95: 1899-1902
        • Fitzky B.U.
        • Moebius F.F.
        • Asaoka H.
        • Waage-Baudet H.
        • Xu L.
        • Xu G.
        • et al.
        7-Dehydrocholesterol-dependent proteolysis of HMG-CoA reductase suppresses sterol biosynthesis in a mouse model of Smith-Lemli-Opitz/RSH syndrome.
        J Clin Invest. 2001; 108: 905-915
        • Luu W.
        • Hart-Smith G.
        • Sharpe L.J.
        • Brown A.J.
        The terminal enzymes of cholesterol synthesis, DHCR24 and DHCR7, interact physically and functionally.
        J Lipid Res. 2015; 56: 888-897
        • Trépo E.
        • Ouziel R.
        • Pradat P.
        • Momozawa Y.
        • Quertinmont E.
        • Gervy C.
        • et al.
        Marked 25-hydroxyvitamin D deficiency is associated with poor prognosis in patients with alcoholic liver disease.
        J Hepatol. 2013; 59: 344-350
        • Rodgers M.A.
        • Villareal V.A.
        • Schaefer E.A.
        • Peng L.F.
        • Corey K.E.
        • Chung R.T.
        • et al.
        Lipid metabolite profiling identifies desmosterol metabolism as a new antiviral target for hepatitis C virus.
        J Am Chem Soc. 2012; 134: 6896-6899
        • Liang S.
        • Ma H.Y.
        • Zhong Z.
        • Dhar D.
        • Liu X.
        • Xu J.
        • et al.
        NADPH oxidase 1 in liver macrophages promotes inflammation and tumor development in mice.
        Gastroenterology. 2019; 156: 1156-1172.e6