Advertisement

Feasibility and safety of G-CSF administration to induce bone marrow-derived cells mobilization in patients with end stage liver disease

Published:April 06, 2006DOI:https://doi.org/10.1016/j.jhep.2006.02.018

      Background/Aims

      To evaluate feasibility, safety and pattern of bone marrow-derived cells (BMC) mobilization in patients with end stage liver cirrhosis following granulocyte-colony stimulating factor (G-CSF) administration.

      Methods

      Eight patients with severe liver cirrhosis (Child–Pugh score B-C, spleen diameter less than 170 mm) were included. They were treated with G-CSF (5 μg/kg b.i.d for three consecutive days) to mobilize BMC, evaluated as circulating CD34+ve cells (flow cytometry) and myeloid CFU-GM progenitors (in vitro colony growth assay). Co-expression in CD34+ve cells markers of differentiation (Thy1, CD133, CXCR4, c1qRp) were investigated on CD34+ve cells by double direct immunofluorescence. Data from 40 healthy haematopoietic stem cell donors were used as controls.

      Results

      Mobilization of CD34+ve cells occurred in all patients. It was paralleled by expansion of circulating CFU-GM progenitors. Circulating CD34+ve cells co-expressed epithelial and stem cell markers in both cirrhotics and volunteer stem cell donors. G-CSF was well tolerated, no adverse event occurred, a significant reversible increase of splenic longitudinal diameter was observed.

      Conclusions

      (i) G-CSF mobilization of BMC co-expressing epithelial and stem markers occurred in all cirrhotic patients; (ii) splenomegaly up to 170 mm does not prevent safe BMC mobilization following G-CSF in patients with end stage liver disease; (iii) mobilized BMC may represent an easy immature cell source potentially useful for novel approaches for liver regeneration.

      Keywords

      Abbreviations:

      BMC (bone marrow-derived cells), G-CSF (granulocyte-colony stimulating factor), PB (peripheral blood), US (ultrasound), WBC (white blood cell)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Hepatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Petersen B.E.
        • Bowen W.C.
        • Patrene K.D.
        • Mars W.M.
        • Sullivan A.K.
        • Murase N.
        • et al.
        Bone marrow as a potential source of hepatic oval cells.
        Science. 1999; 284: 1168-1170
        • Lagasse E.
        • Connors H.
        • Al-Dhalimy M.
        • Reitsma M.
        • Dohse M.
        • Osborne L.
        • et al.
        Purified hematopoietic stem cells can differentiate into hepatocytes in vivo.
        Nat Med. 2000; 6: 1229-1234
        • Theise N.D.
        • Badve S.
        • Saxena R.
        • Henegariu O.
        • Sell S.
        • Crawford J.M.
        • et al.
        Derivation of hepatocytes from bone marrow cells in mice after radiation-induced myeloablation.
        Hepatology. 2000; 31: 235-240
        • Theise N.D.
        • Nimmakayalu M.
        • Gardner R.
        • Illei P.B.
        • Morgan G.
        • Teperman L.
        • et al.
        Liver from bone marrow in humans.
        Hepatology. 2000; 32: 11-16
        • Jiang Y.
        • Jahagirdar B.N.
        • Reinhardt R.L.
        • Schwartz R.E.
        • Keene C.D.
        • Ortiz-Gonzalez X.R.
        • et al.
        Pluripotency of mesenchymal stem cells derived from adult marrow.
        Nature. 2002; 418 ([Epub 2002 Jun 20]): 41-49
        • Ng I.
        • Chan K.L.
        • Shek W.H.
        • Lee J.M.F.
        • Fong D.Y.T.
        • Lo C.M.
        • et al.
        High frequency of chimerism in transplanted livers.
        Hepatology. 2003; 38: 989-998
        • Korbling M.
        • Katz R.L.
        • Khanna A.
        • Ruifrok A.C.
        • Rondon G.
        • Albitar M.
        • et al.
        Hepatocytes and epithelial cells of donor origin in recipients of peripheral-blood stem cells.
        N Engl J Med. 2002; 346: 738-746
        • Terai S.
        • Sakaida I.
        • Yamamoto N.
        • Omori K.
        • Watanabe T.
        • Ohata S.
        • et al.
        An in vivo model for monitoring trans-differentiation of bone marrow cells into functional hepatocytes.
        J Biochem (Tokyo). 2003; 134: 551-558
        • Masson S.
        • Harrison D.J.
        • Plevris J.N.
        • Newsome P.N.
        Potential of hematopoietic stem cell therapy in hepatology: a critical review.
        Stem Cells. 2004; 22: 897-907
        • Dahlke M.H.
        • Popp F.C.
        • Bahlmann F.H.
        • Aselmann H.
        • Jager M.D.
        • Neipp M.
        • et al.
        Liver regeneration in a retrorsine/CCl4-induced acute liver failure model: do bone marrow-derived cells contribute?.
        J Hepatol. 2003; 39: 365-373
        • Vassilopoulos G.
        • Wang P.R.
        • Russell D.W.
        Transplanted bone marrow regenerates liver by cell fusion.
        Nature. 2003; 422: 901-904
        • Vessey C.J.
        • de la Hall P.M.
        Hepatic stem cells: a review.
        Pathology. 2001; 33: 130-141
        • Fogt F.
        • Beyser K.
        • Poremba C.
        • Khettry U.
        • Ruschoff J.
        Recipient-derived hepatocytes in liver transplant: a rare event in sex-mismatched transplants.
        Hepatology. 2002; 36: 1
        • Gianni A.M.
        • Siena S.
        • Bregni M.
        • Tarella C.
        • Stem A.C.
        • Pileri A.
        • et al.
        Granulocyte–macrophage colony-stimulating factor to harvest circulating haematopoietic stem cells for autotransplantation.
        Lancet. 1989; 2: 580-585
        • Tarella C.
        • Ferrero D.
        • Bregni M.
        • Siena S.
        • Gallo E.
        • Pileri A.
        • et al.
        Peripheral blood expansion of early progenitor cells after high-dose cyclophosphamide and rhGM-CSF.
        Eur J Cancer. 1991; 27: 22-27
        • Sheridan W.P.
        • Begley C.G.
        • Juttner C.
        Effect of peripheral blood progenitor cells mobilized by filgrastim (G-CSF) on platelet recovery after high-dose chemotherapy.
        Lancet. 1992; i: 640-644
        • Tarella C.
        • Zallio F.
        • Caracciolo D.
        Hemopoietic progenitor cell mobilization and harvest following an intensive chemotherapy debulkying in indolent lymphoma patients.
        Stem Cells. 1999; 17: 55-61
        • Yannaki E.
        • Athanasiou E.
        • Xagorari A.
        • Constantinou V.
        • Bastis I.
        • Kaloyannidis P.
        G-CSF-primed hematopoietic stem cells or G-CSF per se accelerate recovery and improve survival after liver injury, predominantly by promoting endogenous repair programs.
        Exp Hematol. 2005; 33: 108-119
        • Toghill P.J.
        • Green S.
        Splenic influences on the blood in chronic liver disease.
        Q J Med. 1979; 48: 613-625
        • Di Capli C.
        • Piscaglia A.C.
        • Giuliante S.
        • Rutella F.
        • Bonanno G.
        • Zocco M.A.
        • et al.
        No evidence of hematopoietic stem cell mobilization in patients submitted to hepatectomy or in patients with acute on chronic liver failure.
        Transplant Proc. 2005; 37: 2563-2566
        • Balaguer H.
        • Galmes A.
        • Ventayol G.
        • Bargay J.
        • Besalduch J.
        Splenic rupture after granulocyte-colony-stimulating factor mobilization in a peripheral blood progenitor cell donor.
        Transfusion. 2004; 44: 1260-1261
        • O’Malley D.P.
        • Whalen M.
        • Banks P.M.
        Spontaneous splenic rupture with fatal outcome following G-CSF administration for myelodysplastic syndrome.
        Am J Hematol. 2003; 73: 294-295
        • Handgretinger R.
        • Gordon P.R.
        • Leimig T.
        • Chen X.
        • Buhring H.J.
        • Niethammer D.
        • et al.
        Biology and plasticity of CD133+ hematopoietic stem cells.
        Ann N Y Acad Sci. 2003; 996: 141-151
        • Potgens A.J.
        • Schmitz U.
        • Kaufmann P.
        • Frank H.G.
        Monoclonal antibody CD133-2 (AC141) against hematopoietic stem cell antigen CD133 shows crossreactivity with cytokeratin 18.
        J Histochem Cytochem. 2002; 50: 1131-1134
        • Fiegel H.C.
        • Park J.J.
        • Lioznov M.V.
        • Martin A.
        • Jaeschke-Melli S.
        • Kaufmann P.M.
        • et al.
        Characterization of cell types during rat liver development.
        Hepatology. 2003; 37: 148-154
        • Ishii T.
        • Yasuchika K.
        • Fujii H.
        • Hoppo T.
        • Baba S.
        • Naito M.
        • et al.
        In vitro differentiation and maturation of mouse embryonic stem cells into hepatocytes.
        Exp Cell Res. 2005; 309: 68-77
        • Danet G.H.
        • Luongo J.L.
        • Butler G.
        • Lu M.M.
        • Tenner A.J.
        • Simon M.C.
        • et al.
        C1qRp defines a new human stem cell population with hematopoietic and hepatic potential.
        Proc Natl Acad Sci U S A. 2002; 99: 10441-10445
        • Kollet O.
        • Shivtiel S.
        • Chen Y.Q.
        • Suriawinata J.
        • Thung S.N.
        • Dabeva M.D.
        • et al.
        HGF, SDF-1, and MMP-9 are involved in stress-induced human CD34+ve stem cell recruitment to the liver.
        J Clin Invest. 2003; 112: 160-169
        • Kucia M.
        • Ratajczak J.
        • Reca R.
        • Janowska-Wieczorek A.
        • Ratajczak M.Z.
        Tissue-specific muscle, neural and liver stem/progenitor cells reside in the bone marrow, respond to an SDF-1 gradient and are mobilized into peripheral blood during stress and tissue injury.
        Blood Cells Mol Dis. 2004; 32: 52-57
        • Ratajczak M.Z.
        • Kucia M.
        • Reca R.
        • Majka M.
        • Janowska-Wieczorek A.
        • Ratajczak J.
        Stem cell plasticity revisited: CXCR4-positive cells expressing mRNA for early muscle, liver and neural cells ‘hide out’ in the bone marrow.
        Leukemia. 2004; 18: 29-40
        • Kucia M.
        • Jankowski K.
        • Reca R.
        • Wysoczynski M.
        • Bandura L.
        • Allendorf D.J.
        • et al.
        CXCR4-SDF-1 signalling, locomotion, chemotaxis and adhesion.
        J Mol Histol. 2004; 35: 233-245
        • Hatch H.M.
        • Zheng D.
        • Jorgensen M.L.
        • Petersen B.E.
        SDF-1alpha/CXCR4: a mechanism for hepatic oval cell activation and bone marrow stem cell recruitment to the injured liver of rats.
        Cloning Stem Cells. 2002; 4: 339-351
        • Champlin R.E.
        • Schmitz N.
        • Horowitz M.M.
        Blood stem cells compared with bone marrow as a source of hematopoietic cells for allogeneic transplantation.
        Blood. 2000; 95: 3702-3709
        • Tarella C.
        • Gavarotti P.
        • Caracciolo D.
        • Corradino P.
        • Cherasco C.
        • Castellino C.
        • et al.
        Haematological support of high-dose sequential chemotherapy: clinical evidence for reduction of toxicity and high response rate in poor risk lymphomas.
        Ann Oncol. 1995; 6: 3-8
        • Schmitz N.
        • Linch D.C.
        • Dreger P.
        • Goldstone A.H.
        • Boogaerts M.A.
        • Ferrant A.
        • et al.
        Randomised trial of filgrastim-mobilised peripheral blood progenitor cell transplantation versus autologous bone-marrow transplantation in lymphoma patients.
        Lancet. 1996; 347: 353-357
        • Winston D.J.
        • Foster P.F.
        • Somberg K.A.
        • Busuttil R.W.
        • Levy M.F.
        • Sheiner P.A.
        • et al.
        Randomized placebo-controlled, double blind, multicenter trial of efficacy and safety of granulocyte colony stimulating factor in liver transplant recipients.
        Transplantation. 1999; 68: 1298-1304
        • Rolando M.
        • Clapperton N.
        • Wade J.
        • Penetsos G.
        • Mufti G.
        • Williams R.
        Granulocyte colony-stimulating factor improves function of neutrophils from patients with acute liver failure.
        Eur J Gastroenterol Hepatol. 2000; 12: 1135-1140
        • Rolando M.
        • Clapperton N.
        • Wade J.
        • Wndom J.
        Administering granulocyte colony-stimulating factor to acute liver failure patients corrects neutrophil defects.
        Eur J Gastroenterol Hepatol. 2000; 12: 1323-1328
        • Panasiuk A.
        • Kemona A.
        Bone marrow failure and hematological abnormalities in alcoholic liver cirrhosis.
        Rocz Akad Med Bialymst. 2001; 46: 100-105
        • am Esch J.S.
        • Knoefel W.T.
        • Klein M.
        • Ghodsizad A.
        • Fuerest G.
        • Poll L.W.
        • et al.
        Portal application of autologous CD133+ bone marrow cells to the liver: a novel concept to support hepatic regeneration.
        Stem Cells. 2005; 23: 463-470
        • Gheling U.M.
        • Willems M.
        • Dandri M.
        • Petersen J.
        • Berna M.
        • Thill M.
        • et al.
        Partial hepatectomy induces mobilization of a unique population of haematopoietic progenitor cells in human healthy liver donors.
        J Hepatol. 2005; 43: 845-853