Research Article| Volume 48, ISSUE 4, P638-647, April 2008

Download started.


Hepatic free fatty acids accumulate in experimental steatohepatitis: Role of adaptive pathways

Published:January 28, 2008DOI:


      We determined the effects of dietary lipid composition on steatohepatitis development with particular attention to the nature of lipid molecules that accumulate in the liver and pathways of hepatic triglyceride synthesis.


      Mice were fed methionine and choline deficient (MCD) diets supplemented with 20% fat as lard (saturated) or olive oil (monounsaturated), for 3 weeks.


      Irrespective of dietary lipid composition, MCD-fed mice developed steatosis, ballooning degeneration and lobular inflammation. MCD-feeding increased hepatic free fatty acid (FFA) levels 2–3-fold, as well as total triglyceride levels. Hepatic FFA composition was characterized by increased ratio of monounsaturated: saturated FFA. There were reduced nuclear levels of the lipogenic transcription factor sterol regulatory element binding protein-1 in MCD-fed mice, but no consistent reduction in fatty acid synthesis genes (acetyl-CoA carboxylase and fatty acid synthase). Consistent with pathways of hepatic triglyceride synthesis, expression of diacylglycerol acyltransferase-1 and -2 was increased, as were delta-5- and delta-6- fatty acid desaturase mRNA levels.


      In this nutritional model of steatohepatitis, accumulation of FFA occurs despite substantial suppression of lipogenesis and induction of triglyceride synthesis genes. Accumulation of FFA supports a lipotoxicity mechanism for liver injury in this form of fatty liver disease.


      ACC (acetyl-CoA carboxylase), DGAT (diacylglycerol acyltransferase), FAS (fatty acid synthase), FFA (free fatty acid), JNK (c-Jun N-terminal kinase), MCD (methionine and choline deficient), MUFA (monounsaturated fatty acid), NAFLD (non-alcoholic fatty liver disease), NAS (NAFLD activity score), NASH (non-alcoholic steatohepatitis), SCD (stearoyl-CoA desaturase), SFA (saturated fatty acid), SREBP (sterol regulatory element binding protein)


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Journal of Hepatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Larter C.Z.
        • Farrell G.C.
        Insulin resistance, adiponectin, cytokines in NASH: which is the best target to treat?.
        J Hepatol. 2006; 44: 253-261
        • Farrell G.C.
        • Larter C.Z.
        Nonalcoholic fatty liver disease: from steatosis to cirrhosis.
        Hepatology. 2006; 43: S99-S112
        • McClain C.J.
        • Barve S.
        • Deaciuc I.
        Good fat/bad fat.
        Hepatology. 2007; 45: 1343-1346
        • Lupi R.
        • Dotta F.
        • Marselli L.
        • Del Guerra S.
        • Masini M.
        • Santangelo C.
        • et al.
        Prolonged exposure to free fatty acids has cytostatic and pro-apoptotic effects on human pancreatic islets: evidence that beta-cell death is caspase mediated, partially dependent on ceramide pathway, and Bcl-2 regulated.
        Diabetes. 2002; 51: 1437-1442
        • Feldstein A.E.
        • Werneburg N.W.
        • Canbay A.
        • Guicciardi M.E.
        • Bronk S.F.
        • Rydzewski R.
        • et al.
        Free fatty acids promote hepatic lipotoxicity by stimulating TNF-alpha expression via a lysosomal pathway.
        Hepatology. 2004; 40: 185-194
        • Malhi H.
        • Bronk S.F.
        • Werneburg N.W.
        • Gores G.J.
        Free fatty acids induce JNK-dependent hepatocyte lipoapoptosis.
        J Biol Chem. 2006; 281: 12093-12101
        • Wei Y.
        • Wang D.
        • Topczewski F.
        • Pagliassotti M.J.
        Saturated fatty acids induce endoplasmic reticulum stress and apoptosis independently of ceramide in liver cells.
        Am J Physiol Endocrinol Metab. 2006; 291: E275-E281
        • Eitel K.
        • Staiger H.
        • Brendel M.D.
        • Brandhorst D.
        • Bretzel R.G.
        • Haring H.U.
        • et al.
        Different role of saturated and unsaturated fatty acids in beta-cell apoptosis.
        Biochem Biophys Res Commun. 2002; 299: 853-856
        • Malhi H.
        • Barreyro F.J.
        • Isomoto H.
        • Bronk S.F.
        • Gores G.J.
        Free fatty acids sensitise hepatocytes to TRAIL mediated cytotoxicity.
        Gut. 2007; 56: 1124-1131
        • dela Pena A.
        • Leclercq I.
        • Field J.
        • George J.
        • Jones B.
        • Farrell G.
        NF-κB activation, rather than TNF, mediates hepatic inflammation in a murine dietary model of steatohepatitis.
        Gastroenterology. 2005; 129: 1663-1674
        • Schattenberg J.M.
        • Singh R.
        • Wang Y.
        • Lefkowitch J.H.
        • Rigoli R.M.
        • Scherer P.E.
        • et al.
        JNK1 but not JNK2 promotes the development of steatohepatitis in mice.
        Hepatology. 2006; 43: 163-172
        • Joshi-Barve S.
        • Barve S.S.
        • Amancherla K.
        • Gobejishvili L.
        • Hill D.
        • Cave M.
        • et al.
        Palmitic acid induces production of proinflammatory cytokine interleukin-8 from hepatocytes.
        Hepatology. 2007; 46: 823-830
        • Musso G.
        • Gambino R.
        • De Michieli F.
        • Cassader M.
        • Rizzetto M.
        • Durazzo M.
        • et al.
        Dietary habits and their relations to insulin resistance and postprandial lipemia in nonalcoholic steatohepatitis.
        Hepatology. 2003; 37: 909-916
        • Solga S.
        • Alkhuraishe A.R.
        • Clark J.M.
        • Torbenson M.
        • Greenwald A.
        • Diehl A.M.
        • et al.
        Dietary composition and nonalcoholic fatty liver disease.
        Dig Dis Sci. 2004; 49: 1578-1583
        • Cortez-Pinto H.
        • Jesus L.
        • Barros H.
        • Lopes C.
        • Moura M.C.
        • Camilo M.E.
        How different is the dietary pattern in non-alcoholic steatohepatitis patients?.
        Clin Nutr. 2006; 25: 816-823
        • Puri P.
        • Baillie R.A.
        • Wiest M.M.
        • Mirshahi F.
        • Choudhury J.
        • Cheung O.
        • et al.
        A lipidomic analysis of nonalcoholic fatty liver disease.
        Hepatology. 2007; 46: 1081-1090
        • de Almeida I.T.
        • Cortez-Pinto H.
        • Fidalgo G.
        • Rodrigues D.
        • Camilo M.E.
        Plasma total and free fatty acids composition in human non-alcoholic steatohepatitis.
        Clin Nutr. 2002; 21: 219-223
        • Rizki G.
        • Arnaboldi L.
        • Gabrielli B.
        • Yan J.
        • Lee G.S.
        • Ng R.K.
        • et al.
        Mice fed a lipogenic methionine–choline-deficient diet develop hypermetabolism coincident with suppression of SCD-1.
        J Lipid Res. 2006; 47: 2280-2290
        • Yamaguchi K.
        • Yang L.
        • McCall S.
        • Huang J.
        • Yu X.X.
        • Pandey S.K.
        • et al.
        Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis.
        Hepatology. 2007; 45: 1366-1374
        • Kleiner D.E.
        • Brunt E.M.
        • Van Natta M.
        • Behling C.
        • Contos M.J.
        • Cummings O.W.
        • et al.
        Design and validation of a histological scoring system for nonalcoholic fatty liver disease.
        Hepatology. 2005; 41: 1313-1321
        • Rombaut R.
        • Camp J.V.
        • Dewettinck K.
        Analysis of phospho- and sphingolipids in dairy products by a new HPLC method.
        J Dairy Sci. 2005; 88: 482-488
      1. Rasband WS, Image J, US National Institutes of Health, Bethesda, Maryland, USA,, 1997-2007.

        • Arsov T.
        • Larter C.Z.
        • Nolan C.J.
        • Petrovski N.
        • Goodnow C.C.
        • Teoh N.C.
        • et al.
        Adaptive failure to high-fat diet characterizes steatohepatitis in Alms1 mutant mice.
        Biochem Biophys Res Comm. 2006; 342: 1152-1159
        • Day C.P.
        From fat to inflammation.
        Gastroenterology. 2006; 130: 207-210
        • Lalor P.F.
        • Faint J.
        • Aarbodem Y.
        • Hubscher S.G.
        • Adams D.H.
        The role of cytokines and chemokines in the development of steatohepatitis.
        Semin Liver Dis. 2007; 27: 173-193
        • Chalasani N.
        • Gorski J.C.
        • Asghar M.S.
        • Asghar A.
        • Foresman B.
        • Hall S.D.
        • et al.
        Hepatic cytochrome P450 2E1 activity in nondiabetic patients with nonalcoholic steatohepatitis.
        Hepatology. 2003; 37: 544-550
        • Nocito A.
        • Dahm F.
        • Jochum W.
        • Jang J.H.
        • Georgiev P.
        • Bader M.
        • et al.
        Serotonin mediates oxidative stress and mitochondrial toxicity in a murine model of nonalcoholic steatohepatitis.
        Gastroenterology. 2007; 133: 608-618
        • Bonanome A.
        • Bennett M.
        • Grundy S.M.
        Metabolic effects of dietary stearic acid in mice: changes in the fatty acid composition of triglycerides and phospholipids in various tissues.
        Atherosclerosis. 1992; 94: 119-127
        • Donnelly K.L.
        • Smith C.I.
        • Schwarzenberg S.J.
        • Jessurun J.
        • Boldt M.D.
        • Parks E.J.
        Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease.
        J Clin Invest. 2005; 115: 1343-1351
        • Biddinger S.B.
        • Almind K.
        • Miyazaki M.
        • Kokkotou E.
        • Ntambi J.M.
        • Kahn C.R.
        Effects of diet and genetic background on sterol regulatory element-binding protein-1c, stearoyl-CoA desaturase 1 and the development of the metabolic syndrome.
        Diabetes. 2005; 54: 1314-1323
        • Deng Q.
        • She H.
        • Cheng J.H.
        • French S.W.
        • Koop D.R.
        • Xiong S.
        • et al.
        Steatohepatitis induced by intragastric overfeeding in mice.
        Hepatology. 2005; 42: 905-914
        • Shimomura I.
        • Bashmakov Y.
        • Horton J.D.
        Increased levels of nuclear SREBP-1c associated with fatty livers in two mouse models of diabetes mellitus.
        J Biol Chem. 1999; 274: 30028-30032
        • Yao Z.M.
        • Vance D.E.
        The active synthesis of phosphatidylcholine is required for very low density lipoprotein secretion from rat hepatocytes.
        J Biol Chem. 1988; 263: 2998-3004
        • Miyazaki M.
        • Kim Y.-C.
        • Ntambi J.M.
        A lipogenic diet in mice with a disruption of the stearoyl-CoA desaturase 1 gene reveals a stringent requirement of endogenous monounsaturated fatty acids for triglyceride synthesis.
        J Lipid Res. 2001; 42: 1018-1024
      2. Larter CZ, Yeh MM, Cheng J, Williams J, Brown S, Dela Pena A, et al. Activation of peroxisome proliferator-activated receptor alpha by dietary fish oil attenuates steatosis, but does not prevent experimental steatohepatitis because of hepatic lipoperoxide accumulation. J Gastroenterol Hepatol 2007;doi:10.1111/j.1440-1746.2007.05157.x.

        • Cnop M.
        • Hannaert J.C.
        • Hoorens A.
        • Eizirk D.L.
        • Pipeleers D.G.
        Inverse relationship between cytotoxicity of free fatty acids in pancreatic islet cells and cellular triglyceride accumulation.
        Diabetes. 2005; 54: 2917-2924
        • Monetti M.
        • Levin M.C.
        • Watt M.J.
        • Sajan M.P.
        • Marmor S.
        • Hubbard B.K.
        • et al.
        Dissociation of hepatic steatosis and insulin resistance in mice overexpressing DGAT in the liver.
        Cell Metab. 2007; 6: 69-78