Advertisement
Review| Volume 48, ISSUE 4, P657-665, April 2008

Environmental factors as disease accelerators during chronic hepatitis C

Open AccessPublished:January 28, 2008DOI:https://doi.org/10.1016/j.jhep.2008.01.004
      Progression of chronic hepatitis is highly variable among individuals, as the result of several host, viral and environmental factors. The latter have been extensively investigated in order to ameliorate hepatitis C outcome, particularly in difficult-to-treat patients. Over the last decade, several studies have shown that a combination of HCV infection and high levels of alcohol abuse results in synergistic acceleration of liver fibrogenesis. In addition, recent data indicate that light alcohol intake may also exacerbate fibrosis progression. It has also been suggested that cigarette smoking may enhance activity grade in patients with chronic hepatitis C, thereby increasing progression of fibrosis. This assumption mostly relies on epidemiological evidences in the absence of pathogenic studies. Finally, cannabis use is increasingly emerging as a novel co-morbidity in patients with chronic hepatitis C. Indeed, regular cannabis smoking is an independent predictor of both fibrosis and steatosis severity in infected patients. In addition, experimental studies have shown that cannabinoid CB1 receptors enhance liver fibrogenesis and steatogenesis by distinct mechanisms, therefore strongly supporting epidemiological findings. Altogether, patients should be informed of the deleterious impact of alcohol, tobacco and cannabis use and should be offered appropriate support to achieve abstinence.

      Keywords

      1. Introduction

      Chronic hepatitis C (CHC) affects over 170 million people worldwide and is a leading cause of cirrhosis and hepatocellular carcinoma [
      • Wong J.B.
      • McQuillan G.M.
      • McHutchison J.G.
      • Poynard T.
      Estimating future hepatitis C morbidity, mortality, and costs in the United States.
      ]. The disease severity is, however, highly variable among patients and overtime, some individuals run a benign clinical course for decades and others, rapidly progress to end-stage liver disease. Several factors have been linked to fibrosis progression (Table 1) or to a reduced rate of antiviral response and among those, comorbidities amenable to therapeutic intervention require special attention, particularly in difficult-to-treat patients such as non-responders to standard therapy. Not surprisingly, cofibrogenic effects of alcohol intake have been largely described over the last decade. More recently, tobacco use and cannabis use have emerged as novel cofactors of fibrosis enhancement in patients with CHC. The scope of this paper is to review current data on the impact of alcohol intake, tobacco and cannabis use on CHC outcome.
      Table 1Factors associated with fibrosis progression in patients with chronic hepatitis C
      HostOlder age at contamination
      Male gender
      VirusDuration of infection
      Co-morbiditiesHIV co-infection
      Immunosuppression
      High BMI
      Insulin resistance, diabetes
      EnvironmentalAlcohol intake
      Cigarette smoking
      Cannabis use
      OthersFibrosis stage
      Activity grade

      2. Alcohol and hepatitis C

      2.1 Epidemiological data

      Defining the impact of alcohol use on hepatitis C has been the focus of intensive efforts during the last decade, given the frequent coexistence of alcoholism and HCV infection [
      • Singal A.K.
      • Anand B.S.
      Mechanisms of synergy between alcohol and hepatitis C virus.
      ]. Hence, the third US National Health and Nutrition Examination Survey reported that 20% of patients with CHC consume 2 or more drinks daily. Similarly, HCV infection is highly prevalent among alcohol abusers, with HCV antibody seroprevalence ranging between 4.6 and 55.5% [
      • Singal A.K.
      • Anand B.S.
      Mechanisms of synergy between alcohol and hepatitis C virus.
      ]. The reasons for these high rates of HCV infection in alcohol abusers remain unclear and may be related to both enhanced exposure to HCV and decreased spontaneous viral clearance in excessive drinkers. Although intravenous drug users are frequently alcohol abusers [
      • Campbell J.V.
      • Hagan H.
      • Latka M.H.
      • Garfein R.S.
      • Golub E.T.
      • Coady M.H.
      • et al.
      High prevalence of alcohol use among hepatitis C virus antibody positive injection drug users in three US cities.
      ], high rates of HCV seropositivity have been found in alcohol users with no identified risk for viral hepatitis [
      • Rosman A.S.
      • Waraich A.
      • Galvin K.
      • Casiano J.
      • Paronetto F.
      • Lieber C.S.
      Alcoholism is associated with hepatitis C but not hepatitis B in an urban population.
      ], suggesting an impact of alcohol on HCV persistence. This assumption was recently supported in a study comparing two groups of veterans with recovered or ongoing HCV infection. By multivariate analysis, a history of past or present alcohol abuse was significantly associated with chronic HCV infection [
      • Piasecki B.A.
      • Lewis J.D.
      • Reddy K.R.
      • Bellamy S.L.
      • Porter S.B.
      • Weinrieb R.M.
      • et al.
      Influence of alcohol use, race, and viral coinfections on spontaneous HCV clearance in a US veteran population.
      ].

      2.2 Impact of alcohol on CHC outcome

      Several lines of evidence indicate that alcohol affects survival of patients with CHC. In a study of a US national sample of hospitalizations, alcohol abuse was associated with a 40% increased odds of death in patients with CHC [
      • Kim W.R.
      • Gross Jr., J.B.
      • Poterucha J.J.
      • Locke III, G.R.
      • Dickson E.R.
      Outcome of hospital care of liver disease associated with hepatitis C in the United States.
      ]. In addition, retrospective analysis of 6354 consecutive admissions related to alcohol dependence or abuse in a single hospital found a trend for an increased inpatient mortality in individuals with HCV infection [
      • Tsui J.I.
      • Pletcher M.J.
      • Vittinghoff E.
      • Seal K.
      • Gonzales R.
      Hepatitis C and hospital outcomes in patients admitted with alcohol-related problems.
      ].
      An overwhelming number of studies have shown that high levels of alcohol intake accelerate fibrosis progression in patients with CHC. In a retrospective analysis of 1574 patients, Poynard et al. showed that heavy alcohol consumption (⩾50 g/d) was an independent predictor of fibrosis progression rate [
      • Poynard T.
      • Bedossa P.
      • Opolon P.
      Natural history of liver fibrosis progression in patients with chronic hepatitis C. The OBSVIRC, METAVIR, CLINIVIR, and DOSVIRC groups.
      ]. Similarly, several reports identified heavy alcohol intake (⩾50 g/d) as a major cofactor of fibrosis progression [
      • Poynard T.
      • Bedossa P.
      • Opolon P.
      Natural history of liver fibrosis progression in patients with chronic hepatitis C. The OBSVIRC, METAVIR, CLINIVIR, and DOSVIRC groups.
      ,
      • Ostapowicz G.
      • Watson K.J.
      • Locarnini S.A.
      • Desmond P.V.
      Role of alcohol in the progression of liver disease caused by hepatitis C virus infection.
      ,
      • Zarski J.P.
      • Mc Hutchison J.
      • Bronowicki J.P.
      • Sturm N.
      • Garcia-Kennedy R.
      • Hodaj E.
      • et al.
      Rate of natural disease progression in patients with chronic hepatitis C.
      ,
      • Westin J.
      • Lagging L.M.
      • Spak F.
      • Aires N.
      • Svensson E.
      • Lindh M.
      • et al.
      Moderate alcohol intake increases fibrosis progression in untreated patients with hepatitis C virus infection.
      ,
      • Roudot-Thoraval F.
      • Bastie A.
      • Pawlotsky J.M.
      • Dhumeaux D.
      Epidemiological factors affecting the severity of hepatitis C virus-related liver disease: a French survey of 6664 patients. The study group for the prevalence and the epidemiology of hepatitis C virus.
      ] or cirrhotic outcome (Table 2) [
      • Ostapowicz G.
      • Watson K.J.
      • Locarnini S.A.
      • Desmond P.V.
      Role of alcohol in the progression of liver disease caused by hepatitis C virus infection.
      ,
      • Roudot-Thoraval F.
      • Bastie A.
      • Pawlotsky J.M.
      • Dhumeaux D.
      Epidemiological factors affecting the severity of hepatitis C virus-related liver disease: a French survey of 6664 patients. The study group for the prevalence and the epidemiology of hepatitis C virus.
      ,
      • Harris D.R.
      • Gonin R.
      • Alter H.J.
      • Wright E.C.
      • Buskell Z.J.
      • Hollinger F.B.
      • et al.
      The relationship of acute transfusion-associated hepatitis to the development of cirrhosis in the presence of alcohol abuse.
      ,
      • Corrao G.
      • Arico S.
      Independent and combined action of hepatitis C virus infection and alcohol consumption on the risk of symptomatic liver cirrhosis.
      ,
      • Wiley T.E.
      • McCarthy M.
      • Breidi L.
      • Layden T.J.
      Impact of alcohol on the histological and clinical progression of hepatitis C infection.
      ,
      • Stroffolini T.
      • Sagnelli E.
      • Mariano A.
      • Craxi A.
      • Almasio P.
      Characteristics of HCV positive subjects referring to hospitals in Italy: a multicentre prevalence study on 6999 cases.
      ,
      • Delarocque-Astagneau E.
      • Roudot-Thoraval F.
      • Campese C.
      • Desenclos J.C.
      The Hepatitis CSSSC. Past excessive alcohol consumption: a major determinant of severe liver disease among newly referred hepatitis C virus infected patients in hepatology reference centers, France, 2001.
      ,
      • Thomas D.L.
      • Astemborski J.
      • Rai R.M.
      • Anania F.A.
      • Schaeffer M.
      • Galai N.
      • et al.
      The natural history of hepatitis C virus infection: host, viral, and environmental factors.
      ,
      • Pol S.
      • Fontaine H.
      • Carnot F.
      • Zylberberg H.
      • Berthelot P.
      • Brechot C.
      • et al.
      Predictive factors for development of cirrhosis in parenterally acquired chronic hepatitis C: a comparison between immunocompetent and immunocompromised patients.
      ,
      • Harris H.E.
      • Ramsay M.E.
      • Andrews N.
      • Eldridge K.P.
      Clinical course of hepatitis C virus during the first decade of infection: cohort study.
      ,
      • Bellentani S.
      • Pozzato G.
      • Saccoccio G.
      • Crovatto M.
      • Croce L.S.
      • Mazzoran L.
      • et al.
      Clinical course and risk factors of hepatitis C virus related liver disease in the general population: report from the Dionysos study.
      ]. These studies were somewhat limited by their predominant cross-sectional or retrospective design and displayed significant variability in the definition of alcohol abuse in terms of level, duration and recording, but nevertheless yielded consistent results. In addition, longitudinal follow-up of patients with CHC also found that alcohol use predicts fibrosis progression [
      • Zarski J.P.
      • Mc Hutchison J.
      • Bronowicki J.P.
      • Sturm N.
      • Garcia-Kennedy R.
      • Hodaj E.
      • et al.
      Rate of natural disease progression in patients with chronic hepatitis C.
      ], cirrhotic decompensation [
      • Thomas D.L.
      • Astemborski J.
      • Rai R.M.
      • Anania F.A.
      • Schaeffer M.
      • Galai N.
      • et al.
      The natural history of hepatitis C virus infection: host, viral, and environmental factors.
      ] and increases the rate of liver-related deaths [
      • Harris H.E.
      • Ramsay M.E.
      • Andrews N.
      • Eldridge K.P.
      Clinical course of hepatitis C virus during the first decade of infection: cohort study.
      ]. Finally, a recent meta-analysis comprising 15 positive and 5 negative studies in a total of 13,706 patients estimated the pooled relative risk of cirrhosis or decompensated cirrhosis in alcohol abusers to be 2.33 (95% CI 1.67–3.26) [
      • Hutchinson S.J.
      • Bird S.M.
      • Goldberg D.J.
      Influence of alcohol on the progression of hepatitis C virus infection: a meta-analysis.
      ].
      Table 2Impact of alcohol on progression to cirrhosis in patients with chronic hepatitis C
      Author, country, yearPatients (% cirrhosis)Definition of alcohol intakeImpact of alcohol on cirrhotic outcomeOther cofactors of fibrosis
      Roudot-Thoraval, France, 1997
      • Roudot-Thoraval F.
      • Bastie A.
      • Pawlotsky J.M.
      • Dhumeaux D.
      Epidemiological factors affecting the severity of hepatitis C virus-related liver disease: a French survey of 6664 patients. The study group for the prevalence and the epidemiology of hepatitis C virus.
      5789 CHC (21%)>50 g/d (F), >60 g/d (M), at least 1 yearOR = 3.38 (2.82–4.05)Age, route of transmission, duration of infection, HBV coinfection
      Wiley, US, 1998
      • Wiley T.E.
      • McCarthy M.
      • Breidi L.
      • Layden T.J.
      Impact of alcohol on the histological and clinical progression of hepatitis C infection.
      176 CHC (39%)>40 g/d (F), >60 g/d (M), at least 5 yearsHigher rate of cirrhosis: 58% vs 10% in the 2nd decade of the disease (p < 0.01)
      Ostapowicz, Australia, 1998
      • Ostapowicz G.
      • Watson K.J.
      • Locarnini S.A.
      • Desmond P.V.
      Role of alcohol in the progression of liver disease caused by hepatitis C virus infection.
      234 CHC (21%)Per 100.000 g lifetime intakeOR = 1.16 (1.02–1.31)Age
      Pol, France, 1998
      • Pol S.
      • Fontaine H.
      • Carnot F.
      • Zylberberg H.
      • Berthelot P.
      • Brechot C.
      • et al.
      Predictive factors for development of cirrhosis in parenterally acquired chronic hepatitis C: a comparison between immunocompetent and immunocompromised patients.
      553 CHC (12.5%)>80 g/d at least 2 yearsRR = 2.9 (1.6–5.4)Age at contamiantion, duration of infection, HIV status
      Corrao, Italy, 1998
      • Corrao G.
      • Arico S.
      Independent and combined action of hepatitis C virus infection and alcohol consumption on the risk of symptomatic liver cirrhosis.
      285 cirrhosisquantitative lifetime: 0, 25, 50, 75, 100, ⩾125 g/dAdditive for >50 g/d alcoholAge, gender
      417 controls with acute diseasesSynergistic for alcohol >125 g/d
      Bellentani, Italy, 1999
      • Bellentani S.
      • Pozzato G.
      • Saccoccio G.
      • Crovatto M.
      • Croce L.S.
      • Mazzoran L.
      • et al.
      Clinical course and risk factors of hepatitis C virus related liver disease in the general population: report from the Dionysos study.
      General population survey<30 g/d for 10 yearsNSMale gender, age, genotype 1b
      162 HCV (12%)>30 g/d for 10 yearsOR = 3.8 (1.2–7.4)
      Thomas, US, 2000
      • Thomas D.L.
      • Astemborski J.
      • Rai R.M.
      • Anania F.A.
      • Schaeffer M.
      • Galai N.
      • et al.
      The natural history of hepatitis C virus infection: host, viral, and environmental factors.
      Follow-up of 1667 IDU with CHC (2.3%) cirrhosis at 8.8 years90–260 g/week at entryRR = 1.57 (0.65–3.79)Age at enrollment
      >260 g/week at entryRR = 3.6 ( 1.73–7.52)
      Harris, US, 2001
      • Harris D.R.
      • Gonin R.
      • Alter H.J.
      • Wright E.C.
      • Buskell Z.J.
      • Hollinger F.B.
      • et al.
      The relationship of acute transfusion-associated hepatitis to the development of cirrhosis in the presence of alcohol abuse.
      Follow-up of post transfusion cohort; 206 CHC (17.0%) and 535 controls (3.2%)>80 g/dOR = 4.0 (2.1–7.7)
      Harris, UK, 2002
      • Harris H.E.
      • Ramsay M.E.
      • Andrews N.
      • Eldridge K.P.
      Clinical course of hepatitis C virus during the first decade of infection: cohort study.
      Follow-up of post transfusion cohort; 924 CHC vs 475 controls (9.5%)>260 g/weekRR = 2.84 (1. 09–7.41)Male gender
      Delarocque, 2005
      • Delarocque-Astagneau E.
      • Roudot-Thoraval F.
      • Campese C.
      • Desenclos J.C.
      The Hepatitis CSSSC. Past excessive alcohol consumption: a major determinant of severe liver disease among newly referred hepatitis C virus infected patients in hepatology reference centers, France, 2001.
      3404 VHC; first referral in 26 French reference centers (11.5%)>30 g/d (F), >40 g/d (M)2.6 (1.9–3.5)Male gender, age >39 at referral, HIV, duration, ag HB status, risk factors,
      Stroffolini, 2006
      • Stroffolini T.
      • Sagnelli E.
      • Mariano A.
      • Craxi A.
      • Almasio P.
      Characteristics of HCV positive subjects referring to hospitals in Italy: a multicentre prevalence study on 6999 cases.
      5632 CHC referred to 79 italian hospitals (18.9%)10–40 g/d0.8 (0.4–1.4)Age, gender
      ⩾ 40/d2.2 (1.3–4.0)
      IDU, intravenous drug user; RR, risk ratio; OR, odds ratio.
      Fewer studies have evaluated the impact of low to moderate alcohol intake on fibrosis progression [
      • Ostapowicz G.
      • Watson K.J.
      • Locarnini S.A.
      • Desmond P.V.
      Role of alcohol in the progression of liver disease caused by hepatitis C virus infection.
      ,
      • Westin J.
      • Lagging L.M.
      • Spak F.
      • Aires N.
      • Svensson E.
      • Lindh M.
      • et al.
      Moderate alcohol intake increases fibrosis progression in untreated patients with hepatitis C virus infection.
      ,
      • Thomas D.L.
      • Astemborski J.
      • Rai R.M.
      • Anania F.A.
      • Schaeffer M.
      • Galai N.
      • et al.
      The natural history of hepatitis C virus infection: host, viral, and environmental factors.
      ,
      • Monto A.
      • Patel K.
      • Bostrom A.
      • Pianko S.
      • Pockros P.
      • McHutchison J.G.
      • et al.
      Risks of a range of alcohol intake on hepatitis C-related fibrosis.
      ,
      • Hezode C.
      • Lonjon I.
      • Roudot-Thoraval F.
      • Pawlotsky J.M.
      • Zafrani E.S.
      • Dhumeaux D.
      Impact of moderate alcohol consumption on histological activity and fibrosis in patients with chronic hepatitis C, and specific influence of steatosis: a prospective study.
      ]. Hezode et al. prospectively evaluated predictors of clinically significant fibrosis (⩾F2 according to the Metavir scoring system) in 260 patients with a daily alcohol intake ⩽50 g during the 6 months preceding liver biopsy [
      • Hezode C.
      • Lonjon I.
      • Roudot-Thoraval F.
      • Pawlotsky J.M.
      • Zafrani E.S.
      • Dhumeaux D.
      Impact of moderate alcohol consumption on histological activity and fibrosis in patients with chronic hepatitis C, and specific influence of steatosis: a prospective study.
      ]. By multivariate analysis, daily alcohol consumption ranging between 31 and 50 g was a strong predictor of fibrosis stage ⩾F2 (OR = 4.3; CI: 1.2–16.0). A retrospective analysis of 78 patients with paired biopsies and a daily alcohol consumption below 40 g found that progression of fibrosis was associated with a higher drinking frequency and a higher level of alcohol intake per occasion [
      • Westin J.
      • Lagging L.M.
      • Spak F.
      • Aires N.
      • Svensson E.
      • Lindh M.
      • et al.
      Moderate alcohol intake increases fibrosis progression in untreated patients with hepatitis C virus infection.
      ]. Alcohol intake below 30 g/day was specifically investigated in two studies that found a non significant trend for worsening of liver fibrosis [
      • Thomas D.L.
      • Astemborski J.
      • Rai R.M.
      • Anania F.A.
      • Schaeffer M.
      • Galai N.
      • et al.
      The natural history of hepatitis C virus infection: host, viral, and environmental factors.
      ,
      • Harris H.E.
      • Ramsay M.E.
      • Andrews N.
      • Eldridge K.P.
      Clinical course of hepatitis C virus during the first decade of infection: cohort study.
      ]. Finally, Monto et al. analysed the average lifetime alcohol intake in 800 HCV patients and found a stepwise increase in mean fibrosis stage between non-drinkers, light (⩽20 g), moderate (>20–50 g) and heavy (⩾50 g) drinkers, although differences did not reach statistical significance [
      • Monto A.
      • Patel K.
      • Bostrom A.
      • Pianko S.
      • Pockros P.
      • McHutchison J.G.
      • et al.
      Risks of a range of alcohol intake on hepatitis C-related fibrosis.
      ]. Overall, these results suggest that there is no safe level of alcohol intake.

      2.3 Impact of alcohol on treatment outcome

      Past and ongoing alcohol abuse has been reported to dose-dependently decrease the response to standard interferon treatment [
      • Singal A.K.
      • Anand B.S.
      Mechanisms of synergy between alcohol and hepatitis C virus.
      ]. However, studies were fraught with several limitations such as the low number of patients included, the retrospective design or the use of standard interferon monotherapy. Nevertheless, these observations suggested that alcohol might reduce sensitivity to interferon and/or adherence to treatment. These issues were addressed in a prospective multicenter study of 726 patients receiving a combination of standard interferon and weight-based ribavirin [
      • Anand B.S.
      • Currie S.
      • Dieperink E.
      • Bini E.J.
      • Shen H.
      • Ho S.B.
      • et al.
      Alcohol use and treatment of hepatitis C virus: results of a national multicenter study.
      ]. Adherence to treatment and sustained viral response rates were similar in non-drinkers and past alcohol users, as defined by abstinence within the year preceding treatment. In contrast, recent alcohol use was associated with a significant increase in treatment discontinuation rate (40% vs 26%) and a corresponding reduction in sustained viral response (14% vs 20%). Subgroup analysis excluding patients with early drop-out indicated that the rate of viral eradication was similar in alcohol users undergoing a full course of treatment, compared to non-drinkers. These results strongly suggest that alcohol reduces therapeutic response by decreasing patient adherence rather than by reducing sensitivity to interferon. Therefore, alcohol users should not be deferred from treatment but should rather be offered specific support to achieve abstinence and improve adherence. In this respect, it has been suggested that detoxification programs might be more successful in alcohol abusers with concurrent HCV infection compared to excessive drinkers without HCV infection [
      • Rifai M.A.
      • Moles J.K.
      • Lehman L.P.
      • Van der Linden B.J.
      Hepatitis C screening and treatment outcomes in patients with substance use/dependence disorders.
      ].

      2.4 Molecular mechanisms of interactions between alcohol and HCV

      Despite strong epidemiological evidence linking alcohol use to acceleration of liver injury in CHC, little is known about the combined effects of ethanol and HCV on the pathogenesis of liver disease. Proposed mechanisms of interaction include enhancement of viral replication, increased oxidative stress and cytotoxicity, as well as impairment of immune response.
      Several studies have shown modest increases in serum viral load in alcohol abusers compared to non-drinkers [
      • Singal A.K.
      • Anand B.S.
      Mechanisms of synergy between alcohol and hepatitis C virus.
      ], suggesting that alcohol may enhance viral replication. In support of this assumption, alcohol metabolites were shown to potentiate expression of viral proteins in an experimental replicon system [
      • Zhang T.
      • Li Y.
      • Lai J.P.
      • Douglas S.D.
      • Metzger D.S.
      • O’Brien C.P.
      • et al.
      Alcohol potentiates hepatitis C virus replicon expression.
      ]. However, other studies failed to demonstrate an impact of alcohol on serum HCV titers [
      • Singal A.K.
      • Anand B.S.
      Mechanisms of synergy between alcohol and hepatitis C virus.
      ] and a recent meta-analysis from 9 available studies concluded that there were no significant differences in serum HCV viral titers of alcohol abusers and non-drinkers [
      • Anand B.S.
      • Currie S.
      • Dieperink E.
      • Bini E.J.
      • Shen H.
      • Ho S.B.
      • et al.
      Alcohol use and treatment of hepatitis C virus: results of a national multicenter study.
      ].
      Both HCV and alcohol are known stimuli of hepatic oxidative stress and lipid peroxidation, suggesting that coexistence of these factors might enhance these pathways [
      • Otani K.
      • Korenaga M.
      • Beard M.R.
      • Li K.
      • Qian T.
      • Showalter L.A.
      • et al.
      Hepatitis C virus core protein, cytochrome P450 2E1, and alcohol produce combined mitochondrial injury and cytotoxicity in hepatoma cells.
      ], thereby leading to increased activation of liver fibrogenic cells and subsequent acceleration of fibrogenesis. Thus, chronic administration of alcohol to HCV-core transgenic mice results in additive hepatic lipid peroxidation, synergistic induction of the profibrogenic cytokine TGF-β1 and activation of hepatic stellate cells [
      • Perlemuter G.
      • Letteron P.
      • Carnot F.
      • Zavala F.
      • Pessayre D.
      • Nalpas B.
      • et al.
      Alcohol and hepatitis C virus core protein additively increase lipid peroxidation and synergistically trigger hepatic cytokine expression in a transgenic mouse model.
      ]. In addition, indirect clinical evidence suggests that enhanced oxidative stress may contribute to increased severity of CHC in alcohol users: in a series of 145 patients with CHC, the frequency of serum antibodies to lipid peroxide adducts was significantly increased in alcohol users compared to non users. Moreover, there was a significant correlation between the titers of lipid-peroxidation related antibodies and the severity of inflammation and fibrosis [
      • Rigamonti C.
      • Mottaran E.
      • Reale E.
      • Rolla R.
      • Cipriani V.
      • Capelli F.
      • et al.
      Moderate alcohol consumption increases oxidative stress in patients with chronic hepatitis C.
      ].
      Experimental data suggest that alcohol-induced impairment of immunity may account for the high rates of persistent viral infection reported in excessive drinkers [
      • Piasecki B.A.
      • Lewis J.D.
      • Reddy K.R.
      • Bellamy S.L.
      • Porter S.B.
      • Weinrieb R.M.
      • et al.
      Influence of alcohol use, race, and viral coinfections on spontaneous HCV clearance in a US veteran population.
      ]. Mice chronically exposed to ethanol show a reduced cellular immune response to HCV core and non structural proteins, following alteration in dendritic cell maturation leading to a propensity to generate Th2-immune response [
      • Aloman C.
      • Gehring S.
      • Wintermeyer P.
      • Kuzushita N.
      • Wands J.R.
      Chronic ethanol consumption impairs cellular immune responses against HCV NS5 protein due to dendritic cell dysfunction.
      ]. In keeping with these data, plasmacytoid and myeloid dendritic cells of patients with CHC display a reduced allostimulatory potential which is further impaired in the presence of alcohol [
      • Dolganiuc A.
      • Kodys K.
      • Kopasz A.
      • Marshall C.
      • Mandrekar P.
      • Szabo G.
      Additive inhibition of dendritic cell allostimulatory capacity by alcohol and hepatitis C is not restored by DC maturation and involves abnormal IL-10 and IL-2 induction.
      ].

      2.5 Summary

      Coexistence of HCV infection and alcohol intake is a frequent finding. Assessment of the interaction between alcohol and HCV is inherently difficult, due to the inaccuracy in alcohol consumption recording. Nonetheless, available studies indicate that alcohol intake is a cofactor of worsened outcome and no safe threshold may be defined at the present time.

      3. Impact of cigarette smoking on the course of CHC

      Whereas morbidity and mortality of cardiopulmonary diseases associated to tobacco use have been extensively documented, available clinical evidence suggests that cigarette smoking does not induce chronic liver injury in healthy individuals. Likewise, experimental data documenting hepatotoxicity and/or liver-directed fibrogenic effects of tobacco components are scarce [
      • Yuen S.T.
      • Gogo Jr., A.R.
      • Luk I.S.
      • Cho C.H.
      • Ho J.C.
      • Loh T.T.
      The effect of nicotine and its interaction with carbon tetrachloride in the rat liver.
      ].
      That tobacco use might negatively impact chronic liver injury was initially suggested by two retrospective studies indicating a deleterious effect of cigarette smoking on prevalence and/or severity of alcoholic [
      • Klatsky A.L.
      • Armstrong M.A.
      Alcohol, smoking, coffee, and cirrhosis.
      ] and HBV-related cirrhosis [
      • Yu M.W.
      • Hsu F.C.
      • Sheen I.S.
      • Chu C.M.
      • Lin D.Y.
      • Chen C.J.
      • et al.
      Prospective study of hepatocellular carcinoma and liver cirrhosis in asymptomatic chronic hepatitis B virus carriers.
      ]. More recently, a history of smoking has been incriminated as a predisposing cofactor of primary biliary cirrhosis [
      • Gershwin M.E.
      • Selmi C.
      • Worman H.J.
      • Gold E.B.
      • Watnik M.
      • Utts J.
      • et al.
      Risk factors and comorbidities in primary biliary cirrhosis: a controlled interview-based study of 1032 patients.
      ]. Moreover, tobacco use was identified as an independent predictor of advanced fibrosis at presentation in a retrospective study of patients with primary biliary cirrhosis [
      • Zein C.O.
      • Beatty K.
      • Post A.B.
      • Logan L.
      • Debanne S.
      • McCullough A.J.
      Smoking and increased severity of hepatic fibrosis in primary biliary cirrhosis: a cross validated retrospective assessment.
      ]. Finally, several reports suggest that cigarette smoking is associated with an increased incidence of hepatocellular carcinoma associated with cirrhosis [
      • Yu M.W.
      • Hsu F.C.
      • Sheen I.S.
      • Chu C.M.
      • Lin D.Y.
      • Chen C.J.
      • et al.
      Prospective study of hepatocellular carcinoma and liver cirrhosis in asymptomatic chronic hepatitis B virus carriers.
      ,
      • Yuan J.M.
      • Govindarajan S.
      • Arakawa K.
      • Yu M.C.
      Synergism of alcohol, diabetes, and viral hepatitis on the risk of hepatocellular carcinoma in blacks and whites in the US.
      ,
      • Jee S.H.
      • Ohrr H.
      • Sull J.W.
      • Samet J.M.
      Cigarette smoking, alcohol drinking, hepatitis B, and risk for hepatocellular carcinoma in Korea.
      ,
      • Marrero J.A.
      • Fontana R.J.
      • Fu S.
      • Conjeevaram H.S.
      • Su G.L.
      • Lok A.S.
      Alcohol, tobacco and obesity are synergistic risk factors for hepatocellular carcinoma.
      ,
      • Chen Z.M.
      • Liu B.Q.
      • Boreham J.
      • Wu Y.P.
      • Chen J.S.
      • Peto R.
      Smoking and liver cancer in China: case-control comparison of 36,000 liver cancer deaths vs 17,000 cirrhosis deaths.
      ,
      • Fujita Y.
      • Shibata A.
      • Ogimoto I.
      • Kurozawa Y.
      • Nose T.
      • Yoshimura T.
      • et al.
      The effect of interaction between hepatitis C virus and cigarette smoking on the risk of hepatocellular carcinoma.
      ].
      Table 3 summarizes the main data regarding the impact of cigarette smoking on fibrosis progression in CHC. Two retrospective studies showed that tobacco use was an independent predictor of fibrosis stage [
      • Pessione F.
      • Ramond M.J.
      • Njapoum C.
      • Duchatelle V.
      • Degott C.
      • Erlinger S.
      • et al.
      Cigarette smoking and hepatic lesions in patients with chronic hepatitis C.
      ,
      • Dev A.
      • Patel K.
      • Conrad A.
      • Blatt L.M.
      • McHutchison J.G.
      Relationship of smoking and fibrosis in patients with chronic hepatitis C.
      ]. However, in the study of Pessione et al., further investigation indicated that this relationship was lost when activity grade was included in the multivariate analysis, suggesting that cigarette smoking may indirectly enhance fibrosis severity, by increasing necroinflammatory grade [
      • Pessione F.
      • Ramond M.J.
      • Njapoum C.
      • Duchatelle V.
      • Degott C.
      • Erlinger S.
      • et al.
      Cigarette smoking and hepatic lesions in patients with chronic hepatitis C.
      ]. Hezode et al. subsequently investigated this hypothesis in a prospective study and found that recent tobacco use predicted activity grade, irrespective of alcohol intake [
      • Hezode C.
      • Lonjon I.
      • Roudot-Thoraval F.
      • Mavier J.P.
      • Pawlotsky J.M.
      • Zafrani E.S.
      • et al.
      Impact of smoking on histological liver lesions in chronic hepatitis C.
      ]; in contrast, whereas activity grade was an independent cofactor of fibrosis severity, there was no relationship between tobacco use and fibrosis stage by multivariate analysis [
      • Hezode C.
      • Lonjon I.
      • Roudot-Thoraval F.
      • Mavier J.P.
      • Pawlotsky J.M.
      • Zafrani E.S.
      • et al.
      Impact of smoking on histological liver lesions in chronic hepatitis C.
      ]. The impact of tobacco use was also investigated in a large-scale population study, using ALT levels as a surrogate marker of necroinflammation. In this survey of 886 patients with positive HCV antibodies, alcohol intake and cigarette smoking were independent predictors of elevated alanine aminotransferase levels [
      • Wang C.S.
      • Wang S.T.
      • Chang T.T.
      • Yao W.J.
      • Chou P.
      Smoking and alanine aminotransferase levels in hepatitis C virus infection: implications for prevention of hepatitis C virus progression.
      ]. Altogether, these data suggest that cigarette smoking may aggravate necroinflammation associated with CHC and thereby accelerate fibrogenesis.
      Table 3Impact of tobacco smoking on severity of CHC
      Authors, yearP/RPatients (n)Definition of tobacco useImpact on ALT level elevation
      By multivariate analysis.
      Impact on activity grade
      By multivariate analysis.
      Impact on fibrosis stage
      By multivariate analysis.
      Other independent cofactors of fibrosis
      By multivariate analysis.
      Pessione, 2001
      • Pessione F.
      • Ramond M.J.
      • Njapoum C.
      • Duchatelle V.
      • Degott C.
      • Erlinger S.
      • et al.
      Cigarette smoking and hepatic lesions in patients with chronic hepatitis C.
      R310NoneIncrease in meanOR = 1Age at biopsy
      ⩽15 pack-yearsactivity gradeOR = 1.2 (0.6–2.2)
      Only if necroinflammatory grade omitted in the model.
      Male gender
      >15 pack-yearsP = 0.04OR = 1.9 (1.1–3.6)
      Only if necroinflammatory grade omitted in the model.
      Alcohol intake >40 g/d
      Wang, 2002
      • Wang C.S.
      • Wang S.T.
      • Chang T.T.
      • Yao W.J.
      • Chou P.
      Smoking and alanine aminotransferase levels in hepatitis C virus infection: implications for prevention of hepatitis C virus progression.
      P880Yes vs NoOR = 1.8 (1.1–2.7)Frequent alcohol use Age >50
      Hezode, 2003
      • Hezode C.
      • Lonjon I.
      • Roudot-Thoraval F.
      • Mavier J.P.
      • Pawlotsky J.M.
      • Zafrani E.S.
      • et al.
      Impact of smoking on histological liver lesions in chronic hepatitis C.
      P244NoneOR = 1NSAge at biopsy
      ⩽15 cig/dayOR = 1.2 (0.5–2.8)Male gender
      >15 cig/dayOR = 3.6 (1.5–8.8)Alcohol intake >30 g/d
      Necroinflammatory grade
      Dev, 2006
      • Dev A.
      • Patel K.
      • Conrad A.
      • Blatt L.M.
      • McHutchison J.G.
      Relationship of smoking and fibrosis in patients with chronic hepatitis C.
      R170Number of cigarettes smoked/day at presentationOR = 1.3 (1.0–1.8)
      No data on necroinflammatory grade.
      HCV genotype 1, Serum VEGF-D
      P, prospective; R, retrospective; NS, not significant.
      a By multivariate analysis.
      b Only if necroinflammatory grade omitted in the model.
      c No data on necroinflammatory grade.
      Pathways underlying cigarette smoking induced progression of CHC or other chronic liver diseases remain elusive in the absence of experimental data. Studies in other tissues indicate that tobacco use enhances several pathways of the wound healing response, such as oxidative stress [
      • Jaimes E.A.
      • Tian R.X.
      • Raij L.
      Nicotine: the link between cigarette smoking and the progression of renal injury?.
      ,
      • Agarwal R.
      Smoking, oxidative stress and inflammation: impact on resting energy expenditure in diabetic nephropathy.
      ] or the production of proinflammatory cytokines [
      • Yang S.R.
      • Chida A.S.
      • Bauter M.R.
      • Shafiq N.
      • Seweryniak K.
      • Maggirwar S.B.
      • et al.
      Cigarette smoke induces proinflammatory cytokine release by activation of NF-kappaB and posttranslational modifications of histone deacetylase in macrophages.
      ], leading to accumulation of fibrogenic cells and enhancement of extracellular matrix protein synthesis [
      • Jaimes E.A.
      • Tian R.X.
      • Raij L.
      Nicotine: the link between cigarette smoking and the progression of renal injury?.
      ]. Moreover, nicotine has also been shown to impair immune response [
      • Geng Y.
      • Savage S.M.
      • Razani-Boroujerdi S.
      • Sopori M.L.
      Effects of nicotine on the immune response II. Chronic nicotine treatment induces T cell anergy.
      ]. Finally, tobacco use also generates insulin resistance [
      • Houston T.K.
      • Person S.D.
      • Pletcher M.J.
      • Liu K.
      • Iribarren C.
      • Kiefe C.I.
      Active and passive smoking and development of glucose intolerance among young adults in a prospective cohort: CARDIA study.
      ,
      • Anan F.
      • Takahashi N.
      • Shinohara T.
      • Nakagawa M.
      • Masaki T.
      • Katsuragi I.
      • et al.
      Smoking is associated with insulin resistance and cardiovascular autonomic dysfunction in type 2 diabetic patients.
      ], a known cofactor of fibrosis severity during CHC [
      • Leandro G.
      • Mangia A.
      • Hui J.
      • Fabris P.
      • Rubbia-Brandt L.
      • Colloredo G.
      • et al.
      Relationship between steatosis, inflammation, and fibrosis in chronic hepatitis C: a meta-analysis of individual patient data.
      ,
      • Fartoux L.
      • Chazouilleres O.
      • Wendum D.
      • Poupon R.
      • Serfaty L.
      Impact of steatosis on progression of fibrosis in patients with mild hepatitis C.
      ].
      Altogether, available studies, although mostly retrospective, suggest that cigarette smoking may enhance necroinflammation in patients with CHC, thereby accelerating progression of fibrosis. Additional prospective investigations are warranted in order to confirm these observations and experimental studies are needed to support these findings.

      4. Cannabis and the endocannabinoid system

      Cannabis Sativa has been used for medicinal purposes over millennia. During the 19th century, the plant was increasingly recommended for its analgesic, muscle relaxant, orexigenic and anticonvulsant properties in a variety of diseases, ranging from epilepsy, tetanus, rheumatism to gastroenterological symptoms, until growing concern about the dangers of abuse led to banning from the pharmacopeia in the 1930’s [
      • Mallat A.
      • Lotersztajn S.
      Endocannabinoids and their receptors in the liver.
      ,
      • Mallat A.
      • Lotersztajn S.
      Endocannabinoids as novel mediators of liver diseases.
      ,
      • Pacher P.
      • Batkai S.
      • Kunos G.
      The endocannabinoid system as an emerging target of pharmacotherapy.
      ]. Recreational use of marijuana progressively expanded worldwide thereafter. Albeit cannabis use primarily occurs in teenagers and young adults and is usually self-limited, continued consumption for prolonged periods has been described, predominantly in frequent users [
      • Chen K.
      • Kandel D.B.
      Predictors of cessation of marijuana use: an event history analysis.
      ,
      • Swift W.
      • Hall W.
      • Copeland J.
      One year follow-up of cannabis dependence among long-term users in Sydney, Australia.
      ].

      4.1 Cannabis and the endocannabinoid system

      Δ9-tetrahydrocannabinol (THC) was identified in 1964 as the compound responsible for psychoactive effects of cannabis, and further studies revealed the concurrent presence of over 60 bioactive phytocannabinoids [
      • Mallat A.
      • Lotersztajn S.
      Endocannabinoids and their receptors in the liver.
      ,
      • Mallat A.
      • Lotersztajn S.
      Endocannabinoids as novel mediators of liver diseases.
      ,
      • Pacher P.
      • Batkai S.
      • Kunos G.
      The endocannabinoid system as an emerging target of pharmacotherapy.
      ,
      • Mallat A.
      • Teixeira-Clerc F.
      • Deveaux V.
      • Lotersztajn S.
      Cannabinoid receptors as new targets of antifibrosing strategies during chronic liver diseases.
      ]. Subsequent research efforts led to the characterisation of a cannabinoid system, comprising specific binding sites (CB1 and CB2), their endogenous lipid ligands known as endocannabinoids, and a machinery dedicated to endocannabinoid and synthesis and degradation [
      • Mallat A.
      • Lotersztajn S.
      Endocannabinoids and their receptors in the liver.
      ,
      • Pacher P.
      • Batkai S.
      • Kunos G.
      The endocannabinoid system as an emerging target of pharmacotherapy.
      ,
      • Mallat A.
      • Teixeira-Clerc F.
      • Deveaux V.
      • Lotersztajn S.
      Cannabinoid receptors as new targets of antifibrosing strategies during chronic liver diseases.
      ,
      • Lotersztajn S.
      • Teixeira-Clerc F.
      • Julien B.
      • Deveaux V.
      • Ichigotani Y.
      • Manin S.
      • et al.
      CB2 receptors as new therapeutic targets for liver diseases.
      ].
      CB1 and CB2 belong to the superfamily of G-protein coupled receptors and display similar affinity for THC [
      • Pacher P.
      • Batkai S.
      • Kunos G.
      The endocannabinoid system as an emerging target of pharmacotherapy.
      ,
      • Mallat A.
      • Teixeira-Clerc F.
      • Deveaux V.
      • Lotersztajn S.
      Cannabinoid receptors as new targets of antifibrosing strategies during chronic liver diseases.
      ,
      • Lotersztajn S.
      • Teixeira-Clerc F.
      • Julien B.
      • Deveaux V.
      • Ichigotani Y.
      • Manin S.
      • et al.
      CB2 receptors as new therapeutic targets for liver diseases.
      ,
      • Piomelli D.
      • Giuffrida A.
      • Calignano A.
      • Rodriguez de Fonseca F.
      The endocannabinoid system as a target for therapeutic drugs.
      ]. CB1 receptor is highly expressed in the central nervous system and accounts for the psychoactive effects of cannabis [
      • Mallat A.
      • Lotersztajn S.
      Endocannabinoids and their receptors in the liver.
      ,
      • Pacher P.
      • Batkai S.
      • Kunos G.
      The endocannabinoid system as an emerging target of pharmacotherapy.
      ,
      • Piomelli D.
      • Giuffrida A.
      • Calignano A.
      • Rodriguez de Fonseca F.
      The endocannabinoid system as a target for therapeutic drugs.
      ]. CB2 receptor displays lower levels of expression and is primarily found in immune cells [
      • Pacher P.
      • Batkai S.
      • Kunos G.
      The endocannabinoid system as an emerging target of pharmacotherapy.
      ,
      • Lotersztajn S.
      • Teixeira-Clerc F.
      • Julien B.
      • Deveaux V.
      • Ichigotani Y.
      • Manin S.
      • et al.
      CB2 receptors as new therapeutic targets for liver diseases.
      ]. Anandamide and 2-arachidonoylglycerol are currently the best known endocannabinoids. [
      • Piomelli D.
      • Giuffrida A.
      • Calignano A.
      • Rodriguez de Fonseca F.
      The endocannabinoid system as a target for therapeutic drugs.
      ,
      • Di Marzo V.
      • Bifulco M.
      • De Petrocellis L.
      The endocannabinoid system and its therapeutic exploitation.
      ]. Both compounds derive from membrane fatty acids on demand and undergo intracellular uptake and degradation by specific pathways, following receptor binding. Anandamide preferentially binds CB1 receptors, whereas 2-arachidonoylglycerol displays similar affinity for CB1 and CB2 receptors [
      • Mallat A.
      • Lotersztajn S.
      Endocannabinoids as novel mediators of liver diseases.
      ,
      • Pacher P.
      • Batkai S.
      • Kunos G.
      The endocannabinoid system as an emerging target of pharmacotherapy.
      ].

      4.2 Cannabinoids and liver fibrogenesis: experimental data

      Over the last decade, accumulating reports have shown that distribution of CB1 and CB2 receptors is far less restricted than initially thought and accordingly, the cannabinoid system has been implicated in a wide variety of physiological and pathological conditions [
      • Mallat A.
      • Lotersztajn S.
      Endocannabinoids as novel mediators of liver diseases.
      ,
      • Pacher P.
      • Batkai S.
      • Kunos G.
      The endocannabinoid system as an emerging target of pharmacotherapy.
      ]. We recently showed that CB1 and CB2 receptors are highly upregulated in cirrhotic human surgical liver samples, predominating in liver fibrogenic cells [
      • Julien B.
      • Grenard P.
      • Teixeira-Clerc F.
      • Van Nhieu J.T.
      • Li L.
      • Karsak M.
      • et al.
      Antifibrogenic role of the cannabinoid receptor CB2 in the liver.
      ,
      • Teixeira-Clerc F.
      • Julien B.
      • Grenard P.
      • Tran Van Nhieu J.
      • Deveaux V.
      • Li L.
      • et al.
      CB1 cannabinoid receptor antagonism: a new strategy for the treatment of liver fibrosis.
      ]. Moreover, marked elevations in circulating levels of anandamide and hepatic concentrations of 2-AG were described in cirrhotic patients and in rodent models of liver fibrosis [
      • Fernandez-Rodriguez C.M.
      • Romero J.
      • Petros T.J.
      • Bradshaw H.
      • Gasalla J.M.
      • Gutierrez M.L.
      • et al.
      Circulating endogenous cannabinoid anandamide and portal, systemic and renal hemodynamics in cirrhosis.
      ,
      • Batkai S.
      • Jarai Z.
      • Wagner J.A.
      • Goparaju S.K.
      • Varga K.
      • Liu J.
      • et al.
      Endocannabinoids acting at vascular CB1 receptors mediate the vasodilated state in advanced liver cirrhosis.
      ,
      • Siegmund S.V.
      • Qian T.
      • de Minicis S.
      • Harvey-White J.
      • Kunos G.
      • Vinod K.Y.
      • et al.
      The endocannabinoid 2-arachidonoyl glycerol induces death of hepatic stellate cells via mitochondrial reactive oxygen species.
      ]. These results strongly suggested a role of the endocannabinoid system during chronic liver disease. We therefore delineated the respective roles of CB1 and CB2 receptors in liver fibrogenesis, owing to the use of mice genetically deficient for CB1 or CB2 receptors or treated with the CB1 antagonist rimonabant.
      CB1 receptors were identified as potent enhancers of liver fibrogenesis, based on the finding that administration of the CB1 antagonist rimonabant or genetic inactivation of CB1 receptors reduces the density of liver fibrogenic cells and inhibits fibrosis progression in three models of chronic liver injury (carbon tetrachloride, thioacetamide or bile duct ligation) [
      • Teixeira-Clerc F.
      • Julien B.
      • Grenard P.
      • Tran Van Nhieu J.
      • Deveaux V.
      • Li L.
      • et al.
      CB1 cannabinoid receptor antagonism: a new strategy for the treatment of liver fibrosis.
      ]. In addition, culture studies demonstrated that CB1 enhances proliferation of liver fibrogenic cells and and enhances their survival [
      • Teixeira-Clerc F.
      • Julien B.
      • Grenard P.
      • Tran Van Nhieu J.
      • Deveaux V.
      • Li L.
      • et al.
      CB1 cannabinoid receptor antagonism: a new strategy for the treatment of liver fibrosis.
      ]. Similar findings were subsequently reported by others in mice treated with the CB1 antagonist AM 251 [
      • Yang Y.Y.
      • Lin H.C.
      • Huang Y.T.
      • Lee T.Y.
      • Hou M.C.
      • Wang Y.W.
      • et al.
      Effect of chronic CB1 cannabinoid receptor antagonism on livers of rats with biliary cirrhosis.
      ]. In contrast, experiments in CB2 KO mice chronically exposed to carbon-tetrachloride indicated that CB2 receptors exert antifibrogenic properties, related to enhanced apoptosis and reduced proliferation of hepatic myofibroblasts [
      • Julien B.
      • Grenard P.
      • Teixeira-Clerc F.
      • Van Nhieu J.T.
      • Li L.
      • Karsak M.
      • et al.
      Antifibrogenic role of the cannabinoid receptor CB2 in the liver.
      ]. In aggregate, these findings revealed opposite effects of CB1 and CB2 receptors on liver fibrogenesis and suggested that cannabis use may alter fibrosis progression in patients with ongoing chronic liver injury.

      4.3 Impact of cannabis use on fibrosis severity during CHC

      We therefore investigated the impact of cannabis smoking on fibrosis severity in a cross-sectional study of 270 patients with untreated CHC of known duration [
      • Hezode C.
      • Roudot-Thoraval F.
      • Nguyen S.
      • Grenard P.
      • Julien B.
      • Zafrani E.S.
      • et al.
      Daily cannabis smoking as a risk factor for progression of fibrosis in chronic hepatitis C.
      ]. Data were recorded at the time of liver biopsy, including epidemiological details, lifetime histories of alcohol, tobacco and cannabis use, body mass index, metabolic parameters and viral genotype. Patients were categorized according to cannabis smoking over the span of HCV disease as nonusers, occasional (<1 joint weekly) or daily users (at least 1 daily joint during the course of the disease). Logistic regression analysis identified daily cannabis use as a strong predictor of the severity of liver fibrosis, as assessed by fibrosis stage or fibrosis progression rate (Table 4). A subsequent independent study reported similar findings [
      • Ishida J.H.
      • Jin C.
      • Bacchetti P.
      • Tan V.
      • Peters M.
      • Terrault A.
      Influence of cannabis use on severity of hepatitis C disease.
      ], supporting our recommendation that patients with ongoing CHC should abstain from regular cannabis use.
      Table 4Factors independently related to rapid fibrosis progression rate
      As defined by fibrosis progression rate >0.076 Metavir U/year (median value of the cohort).
      in 267 patients with untreated CHC of known duration (from
      • Hezode C.
      • Roudot-Thoraval F.
      • Nguyen S.
      • Grenard P.
      • Julien B.
      • Zafrani E.S.
      • et al.
      Daily cannabis smoking as a risk factor for progression of fibrosis in chronic hepatitis C.
      )
      FPR > 0.074 U/year (%)OR95% CIp
      Disease-time cannabis use
      None39.71
      Occasional42.51.30.5–3.30.57
      Daily68.53.41.5–7.40.005
      Age at contamination
      ⩽20 years41.41
      21–40 years52.92.41.2–4.80.01
      >40 years7010.53.0–37.1<0.001
      Metavir activity grade
      <A225.91
      ⩾A267.55.42.9–10.3<0.001
      HCV genotype
      142.01
      235.01.00.3–3.10.95
      374.23.41.5–7.70.005
      4/545.81.20.4–3.60.69
      Disease-time alcohol intake
      <30 g/day42.111
      ⩾30 g/day69.32.21.1–4.50.03
      Steatosis
      Absent-mild40.71
      Moderate-severe72.42.01.0–4.10.05
      a As defined by fibrosis progression rate >0.076 Metavir U/year (median value of the cohort).

      4.4 Cannabis and steatosis in patients with chronic hepatitis C

      Steatosis, a common histologic finding in patients with CHC, is associated with higher rates of fibrosis progression and decreased sensitivity to antiviral treatment [
      • Leandro G.
      • Mangia A.
      • Hui J.
      • Fabris P.
      • Rubbia-Brandt L.
      • Colloredo G.
      • et al.
      Relationship between steatosis, inflammation, and fibrosis in chronic hepatitis C: a meta-analysis of individual patient data.
      ,
      • Fartoux L.
      • Chazouilleres O.
      • Wendum D.
      • Poupon R.
      • Serfaty L.
      Impact of steatosis on progression of fibrosis in patients with mild hepatitis C.
      ,
      • Hezode C.
      • Roudot-Thoraval F.
      • Nguyen S.
      • Grenard P.
      • Julien B.
      • Zafrani E.S.
      • et al.
      Daily cannabis smoking as a risk factor for progression of fibrosis in chronic hepatitis C.
      ,
      • Castera L.
      • Hezode C.
      • Roudot-Thoraval F.
      • Lonjon I.
      • Zafrani E.S.
      • Pawlotsky J.M.
      • et al.
      Effect of antiviral treatment on evolution of liver steatosis in patients with chronic hepatitis C: indirect evidence of a role of hepatitis C virus genotype 3 in steatosis.
      ]. Factors contributing to steatogenesis during CHC include HCV genotype 3, the presence of a metabolic syndrome and alcohol abuse [
      • Asselah T.
      • Rubbia-Brandt L.
      • Marcellin P.
      • Negro F.
      Steatosis in chronic hepatitis C: why does it really matter?.
      ,
      • Castera L.
      • Chouteau P.
      • Hezode C.
      • Zafrani E.S.
      • Dhumeaux D.
      • Pawlotsky J.M.
      Hepatitis C virus-induced hepatocellular steatosis.
      ].
      Recent experimental studies suggest a central role of CB1 and CB2 receptors in the pathogenesis of metabolic steatosis (Fig. 1). Osei Hyiaman et al. revealed an increased CB1-dependent cannabinoid tone in the liver and the hypothalamus of obese mice with fatty liver and demonstrated that CB1 receptors promote liver steatogenesis via central orexigenic properties and peripheral lipogenic effects in hepatocytes [
      • Osei-Hyiaman D.
      • Depetrillo M.
      • Pacher P.
      • Liu J.
      • Radaeva S.
      • Batkai S.
      • et al.
      Endocannabinoid activation at hepatic CB(1) receptors stimulates fatty acid synthesis and contributes to diet-induced obesity.
      ]. In line with these observations, administration of the CB1 receptor antagonist rimonabant to genetically obese fa/fa rats prevented the development of steatosis and improved parameters of the metabolic syndrome [
      • Gary-Bobo M.
      • Elachouri G.
      • Gallas J.F.
      • Janiak P.
      • Marini P.
      • Ravinet-Trillou C.
      • et al.
      Rimonabant reduces obesity-associated hepatic steatosis and features of metabolic syndrome in obese Zucker fa/fa rats.
      ]. We recently investigated the impact of CB2 receptors on metabolic steatosis in CB2KO mice submitted to a high fat diet and showed that CB2 receptors promote steatosis, by enhancing inflammation in the adipose tissue (preliminary results, [
      • Deveaux V.
      • Ichitogani Y.
      • Teixeira-Clerc F.
      • Manin S.
      • Tran-Van Nhieu J.
      • Karsak M.
      • et al.
      CB2 receptor antagonism reduces diet-induced obesity, insulin resistance and hepatic steatosis.
      ]).
      Figure thumbnail gr1
      Fig. 1Cannabis and chronic hepatitis C: impact and experimental mechanisms CCl4, carbon tetrachloride; TAA, thioacetamide. [This figure appears in colour on the web].
      Collectively, these data identify CB1 and CB2 receptors as key players in metabolic steatogenesis and suggest that the cannabinoid system may play a significant role in the development of steatosis associated to CHC. We therefore took advantage of the high prevalence of steatosis in patients with chronic hepatitis C, and investigated the impact of recent (6 months) cannabis use on the severity of steatosis in 277 untreated patients. By logistic regression analysis, daily cannabis use was identified as a predictor of severe steatosis, irrespective of genotype, activity grade, body mass index, the presence of diabetes or viral load (Fig. 1) [
      • Hezode C.
      • Zafrani E.S.
      • Roudot-Thoraval F.
      • Costentin C.
      • Hessami A.
      • Bouvier-Alias M.
      • et al.
      Daily cannabis use, a novel risk factor of steatosis severity in patients with chronic hepatitis C.
      ].

      4.5 Future prospects

      Altogether, our results indicate that regular cannabis use is strongly associated with enhanced steatosis and worsening of fibrosis in patients with CHC. These findings are supported by our experimental studies demonstrating that CB1 receptors promote liver fibrogenesis and steatosis and that CB2 receptors display antifibrogenic effects and enhance steatosis (Fig. 1). We therefore recommend that management of patients with CHC should routinely include evaluation of cannabis use history and incentive to abstain from continued consumption. Whether the deleterious impact of cannabis use also holds true in other chronic liver diseases remains to be investigated.
      Rimonabant, the first generation of CB1 antagonists, has been approved by the European Agency for the Evaluation of Medicinal products in 2006 for the treatment of obesity/overweight and associated cardio-metabolic risk factors, and other CB1 antagonists are undergoing clinical development [
      • Bifulco M.
      • Grimaldi C.
      • Gazzerro P.
      • Pisanti S.
      • Santoro A.
      Rimonabant: just an antiobesity drug? Current evidence on its pleiotropic effects.
      ]. Therefore, the identification of profibrogenic and steatogenic properties of CB1 receptors might find therapeutic applications for patients with CHC in the coming years. Future clinical trials should evaluate the antifibrosing properties of CB1 antagonists in patients with advanced fibrosis, non-responders to antiviral therapy, or in patients with a contraindication to ribavirin or interferon. CB1 antagonism might also open a new therapeutic approach in the management of insulin resistance associated to chronic hepatitis C. Indeed, recent data indicate that insulin resistance reduces sensitivity to interferon-based treatment and clinical trials are under way in order to evaluate the impact of insulin-sensitizers on the rate of viral eradication following combined antiviral therapy [
      • Negro F.
      Insulin resistance and HCV: will new knowledge modify clinical management?.
      ].

      5. Conclusion

      Physicians are largely aware of the deleterious effects of alcohol abuse in patients with chronic hepatitis C. Recent data suggest that there is no safe level of alcohol intake in this setting, and that abstinence should be recommended. In addition, abstinence appears to enhance the rate of antiviral response. Accordingly, patients should be offered appropriate support, including deaddiction programs if needed. Awareness of the harmful effects of tobacco and cannabis use on fibrosis progression is more recent. Additional studies should further document the impact of tobacco. Evaluation of cannabis exposure should be part of the routine evaluation of patients with chronic hepatitis C and patients should strongly be advised to refrain from regularly using cannabis.

      References

        • Wong J.B.
        • McQuillan G.M.
        • McHutchison J.G.
        • Poynard T.
        Estimating future hepatitis C morbidity, mortality, and costs in the United States.
        Am J Public Health. 2000; 90: 1562-1569
        • Singal A.K.
        • Anand B.S.
        Mechanisms of synergy between alcohol and hepatitis C virus.
        J Clin Gastroenterol. 2007; 41: 761-772
        • Campbell J.V.
        • Hagan H.
        • Latka M.H.
        • Garfein R.S.
        • Golub E.T.
        • Coady M.H.
        • et al.
        High prevalence of alcohol use among hepatitis C virus antibody positive injection drug users in three US cities.
        Drug Alcohol Depend. 2006; 81: 259-265
        • Rosman A.S.
        • Waraich A.
        • Galvin K.
        • Casiano J.
        • Paronetto F.
        • Lieber C.S.
        Alcoholism is associated with hepatitis C but not hepatitis B in an urban population.
        Am J Gastroenterol. 1996; 91: 498-505
        • Piasecki B.A.
        • Lewis J.D.
        • Reddy K.R.
        • Bellamy S.L.
        • Porter S.B.
        • Weinrieb R.M.
        • et al.
        Influence of alcohol use, race, and viral coinfections on spontaneous HCV clearance in a US veteran population.
        Hepatology. 2004; 40: 892-899
        • Kim W.R.
        • Gross Jr., J.B.
        • Poterucha J.J.
        • Locke III, G.R.
        • Dickson E.R.
        Outcome of hospital care of liver disease associated with hepatitis C in the United States.
        Hepatology. 2001; 33: 201-206
        • Tsui J.I.
        • Pletcher M.J.
        • Vittinghoff E.
        • Seal K.
        • Gonzales R.
        Hepatitis C and hospital outcomes in patients admitted with alcohol-related problems.
        J Hepatol. 2006; 44: 262-266
        • Poynard T.
        • Bedossa P.
        • Opolon P.
        Natural history of liver fibrosis progression in patients with chronic hepatitis C. The OBSVIRC, METAVIR, CLINIVIR, and DOSVIRC groups.
        Lancet. 1997; 349: 825-832
        • Ostapowicz G.
        • Watson K.J.
        • Locarnini S.A.
        • Desmond P.V.
        Role of alcohol in the progression of liver disease caused by hepatitis C virus infection.
        Hepatology. 1998; 27: 1730-1735
        • Zarski J.P.
        • Mc Hutchison J.
        • Bronowicki J.P.
        • Sturm N.
        • Garcia-Kennedy R.
        • Hodaj E.
        • et al.
        Rate of natural disease progression in patients with chronic hepatitis C.
        J Hepatol. 2003; 38: 307-314
        • Westin J.
        • Lagging L.M.
        • Spak F.
        • Aires N.
        • Svensson E.
        • Lindh M.
        • et al.
        Moderate alcohol intake increases fibrosis progression in untreated patients with hepatitis C virus infection.
        J Viral Hepat. 2002; 9: 235-241
        • Roudot-Thoraval F.
        • Bastie A.
        • Pawlotsky J.M.
        • Dhumeaux D.
        Epidemiological factors affecting the severity of hepatitis C virus-related liver disease: a French survey of 6664 patients. The study group for the prevalence and the epidemiology of hepatitis C virus.
        Hepatology. 1997; 26: 485-490
        • Harris D.R.
        • Gonin R.
        • Alter H.J.
        • Wright E.C.
        • Buskell Z.J.
        • Hollinger F.B.
        • et al.
        The relationship of acute transfusion-associated hepatitis to the development of cirrhosis in the presence of alcohol abuse.
        Ann Intern Med. 2001; 134: 120-124
        • Corrao G.
        • Arico S.
        Independent and combined action of hepatitis C virus infection and alcohol consumption on the risk of symptomatic liver cirrhosis.
        Hepatology. 1998; 27: 914-919
        • Wiley T.E.
        • McCarthy M.
        • Breidi L.
        • Layden T.J.
        Impact of alcohol on the histological and clinical progression of hepatitis C infection.
        Hepatology. 1998; 28: 805-809
        • Stroffolini T.
        • Sagnelli E.
        • Mariano A.
        • Craxi A.
        • Almasio P.
        Characteristics of HCV positive subjects referring to hospitals in Italy: a multicentre prevalence study on 6999 cases.
        J Viral Hepat. 2006; 13: 351-354
        • Delarocque-Astagneau E.
        • Roudot-Thoraval F.
        • Campese C.
        • Desenclos J.C.
        The Hepatitis CSSSC. Past excessive alcohol consumption: a major determinant of severe liver disease among newly referred hepatitis C virus infected patients in hepatology reference centers, France, 2001.
        Ann Epidemiol. 2005; 15: 551-557
        • Thomas D.L.
        • Astemborski J.
        • Rai R.M.
        • Anania F.A.
        • Schaeffer M.
        • Galai N.
        • et al.
        The natural history of hepatitis C virus infection: host, viral, and environmental factors.
        JAMA. 2000; 284: 450-456
        • Pol S.
        • Fontaine H.
        • Carnot F.
        • Zylberberg H.
        • Berthelot P.
        • Brechot C.
        • et al.
        Predictive factors for development of cirrhosis in parenterally acquired chronic hepatitis C: a comparison between immunocompetent and immunocompromised patients.
        J Hepatol. 1998; 29: 12-19
        • Harris H.E.
        • Ramsay M.E.
        • Andrews N.
        • Eldridge K.P.
        Clinical course of hepatitis C virus during the first decade of infection: cohort study.
        BMJ. 2002; 324: 450-453
        • Bellentani S.
        • Pozzato G.
        • Saccoccio G.
        • Crovatto M.
        • Croce L.S.
        • Mazzoran L.
        • et al.
        Clinical course and risk factors of hepatitis C virus related liver disease in the general population: report from the Dionysos study.
        Gut. 1999; 44: 874-880
        • Hutchinson S.J.
        • Bird S.M.
        • Goldberg D.J.
        Influence of alcohol on the progression of hepatitis C virus infection: a meta-analysis.
        Clin Gastroenterol Hepatol. 2005; 3: 1150-1159
        • Monto A.
        • Patel K.
        • Bostrom A.
        • Pianko S.
        • Pockros P.
        • McHutchison J.G.
        • et al.
        Risks of a range of alcohol intake on hepatitis C-related fibrosis.
        Hepatology. 2004; 39: 826-834
        • Hezode C.
        • Lonjon I.
        • Roudot-Thoraval F.
        • Pawlotsky J.M.
        • Zafrani E.S.
        • Dhumeaux D.
        Impact of moderate alcohol consumption on histological activity and fibrosis in patients with chronic hepatitis C, and specific influence of steatosis: a prospective study.
        Aliment Pharmacol Ther. 2003; 17: 1031-1037
        • Anand B.S.
        • Currie S.
        • Dieperink E.
        • Bini E.J.
        • Shen H.
        • Ho S.B.
        • et al.
        Alcohol use and treatment of hepatitis C virus: results of a national multicenter study.
        Gastroenterology. 2006; 130: 1607-1616
        • Rifai M.A.
        • Moles J.K.
        • Lehman L.P.
        • Van der Linden B.J.
        Hepatitis C screening and treatment outcomes in patients with substance use/dependence disorders.
        Psychosomatics. 2006; 47: 112-121
        • Zhang T.
        • Li Y.
        • Lai J.P.
        • Douglas S.D.
        • Metzger D.S.
        • O’Brien C.P.
        • et al.
        Alcohol potentiates hepatitis C virus replicon expression.
        Hepatology. 2003; 38: 57-65
        • Otani K.
        • Korenaga M.
        • Beard M.R.
        • Li K.
        • Qian T.
        • Showalter L.A.
        • et al.
        Hepatitis C virus core protein, cytochrome P450 2E1, and alcohol produce combined mitochondrial injury and cytotoxicity in hepatoma cells.
        Gastroenterology. 2005; 128: 96-107
        • Perlemuter G.
        • Letteron P.
        • Carnot F.
        • Zavala F.
        • Pessayre D.
        • Nalpas B.
        • et al.
        Alcohol and hepatitis C virus core protein additively increase lipid peroxidation and synergistically trigger hepatic cytokine expression in a transgenic mouse model.
        J Hepatol. 2003; 39: 1020-1027
        • Rigamonti C.
        • Mottaran E.
        • Reale E.
        • Rolla R.
        • Cipriani V.
        • Capelli F.
        • et al.
        Moderate alcohol consumption increases oxidative stress in patients with chronic hepatitis C.
        Hepatology. 2003; 38: 42-49
        • Aloman C.
        • Gehring S.
        • Wintermeyer P.
        • Kuzushita N.
        • Wands J.R.
        Chronic ethanol consumption impairs cellular immune responses against HCV NS5 protein due to dendritic cell dysfunction.
        Gastroenterology. 2007; 132: 698-708
        • Dolganiuc A.
        • Kodys K.
        • Kopasz A.
        • Marshall C.
        • Mandrekar P.
        • Szabo G.
        Additive inhibition of dendritic cell allostimulatory capacity by alcohol and hepatitis C is not restored by DC maturation and involves abnormal IL-10 and IL-2 induction.
        Alcohol Clin Exp Res. 2003; 27: 1023-1031
        • Yuen S.T.
        • Gogo Jr., A.R.
        • Luk I.S.
        • Cho C.H.
        • Ho J.C.
        • Loh T.T.
        The effect of nicotine and its interaction with carbon tetrachloride in the rat liver.
        Pharmacol Toxicol. 1995; 77: 225-230
        • Klatsky A.L.
        • Armstrong M.A.
        Alcohol, smoking, coffee, and cirrhosis.
        Am J Epidemiol. 1992; 136: 1248-1257
        • Yu M.W.
        • Hsu F.C.
        • Sheen I.S.
        • Chu C.M.
        • Lin D.Y.
        • Chen C.J.
        • et al.
        Prospective study of hepatocellular carcinoma and liver cirrhosis in asymptomatic chronic hepatitis B virus carriers.
        Am J Epidemiol. 1997; 145: 1039-1047
        • Gershwin M.E.
        • Selmi C.
        • Worman H.J.
        • Gold E.B.
        • Watnik M.
        • Utts J.
        • et al.
        Risk factors and comorbidities in primary biliary cirrhosis: a controlled interview-based study of 1032 patients.
        Hepatology. 2005; 42: 1194-1202
        • Zein C.O.
        • Beatty K.
        • Post A.B.
        • Logan L.
        • Debanne S.
        • McCullough A.J.
        Smoking and increased severity of hepatic fibrosis in primary biliary cirrhosis: a cross validated retrospective assessment.
        Hepatology. 2006; 44: 1564-1571
        • Yuan J.M.
        • Govindarajan S.
        • Arakawa K.
        • Yu M.C.
        Synergism of alcohol, diabetes, and viral hepatitis on the risk of hepatocellular carcinoma in blacks and whites in the US.
        Cancer. 2004; 101: 1009-1017
        • Jee S.H.
        • Ohrr H.
        • Sull J.W.
        • Samet J.M.
        Cigarette smoking, alcohol drinking, hepatitis B, and risk for hepatocellular carcinoma in Korea.
        J Natl Cancer Inst. 2004; 96: 1851-1856
        • Marrero J.A.
        • Fontana R.J.
        • Fu S.
        • Conjeevaram H.S.
        • Su G.L.
        • Lok A.S.
        Alcohol, tobacco and obesity are synergistic risk factors for hepatocellular carcinoma.
        J Hepatol. 2005; 42: 218-224
        • Chen Z.M.
        • Liu B.Q.
        • Boreham J.
        • Wu Y.P.
        • Chen J.S.
        • Peto R.
        Smoking and liver cancer in China: case-control comparison of 36,000 liver cancer deaths vs 17,000 cirrhosis deaths.
        Int J Cancer. 2003; 107: 106-112
        • Fujita Y.
        • Shibata A.
        • Ogimoto I.
        • Kurozawa Y.
        • Nose T.
        • Yoshimura T.
        • et al.
        The effect of interaction between hepatitis C virus and cigarette smoking on the risk of hepatocellular carcinoma.
        Br J Cancer. 2006; 94: 737-739
        • Pessione F.
        • Ramond M.J.
        • Njapoum C.
        • Duchatelle V.
        • Degott C.
        • Erlinger S.
        • et al.
        Cigarette smoking and hepatic lesions in patients with chronic hepatitis C.
        Hepatology. 2001; 34: 121-125
        • Dev A.
        • Patel K.
        • Conrad A.
        • Blatt L.M.
        • McHutchison J.G.
        Relationship of smoking and fibrosis in patients with chronic hepatitis C.
        Clin Gastroenterol Hepatol. 2006; 4: 797-801
        • Hezode C.
        • Lonjon I.
        • Roudot-Thoraval F.
        • Mavier J.P.
        • Pawlotsky J.M.
        • Zafrani E.S.
        • et al.
        Impact of smoking on histological liver lesions in chronic hepatitis C.
        Gut. 2003; 52: 126-129
        • Wang C.S.
        • Wang S.T.
        • Chang T.T.
        • Yao W.J.
        • Chou P.
        Smoking and alanine aminotransferase levels in hepatitis C virus infection: implications for prevention of hepatitis C virus progression.
        Arch Int Med. 2002; 162: 811-815
        • Jaimes E.A.
        • Tian R.X.
        • Raij L.
        Nicotine: the link between cigarette smoking and the progression of renal injury?.
        Am J Physiol Heart Circ Physiol. 2007; 292: H76-H82
        • Agarwal R.
        Smoking, oxidative stress and inflammation: impact on resting energy expenditure in diabetic nephropathy.
        BMC Nephrol. 2005; 6: 13
        • Yang S.R.
        • Chida A.S.
        • Bauter M.R.
        • Shafiq N.
        • Seweryniak K.
        • Maggirwar S.B.
        • et al.
        Cigarette smoke induces proinflammatory cytokine release by activation of NF-kappaB and posttranslational modifications of histone deacetylase in macrophages.
        Am J Physiol Lung Cell Mol Physiol. 2006; 291: L46-L57
        • Geng Y.
        • Savage S.M.
        • Razani-Boroujerdi S.
        • Sopori M.L.
        Effects of nicotine on the immune response II. Chronic nicotine treatment induces T cell anergy.
        J Immunol. 1996; 156: 2384-2390
        • Houston T.K.
        • Person S.D.
        • Pletcher M.J.
        • Liu K.
        • Iribarren C.
        • Kiefe C.I.
        Active and passive smoking and development of glucose intolerance among young adults in a prospective cohort: CARDIA study.
        BMJ. 2006; 332: 1064-1069
        • Anan F.
        • Takahashi N.
        • Shinohara T.
        • Nakagawa M.
        • Masaki T.
        • Katsuragi I.
        • et al.
        Smoking is associated with insulin resistance and cardiovascular autonomic dysfunction in type 2 diabetic patients.
        Eur J Clin Invest. 2006; 36: 459-465
        • Leandro G.
        • Mangia A.
        • Hui J.
        • Fabris P.
        • Rubbia-Brandt L.
        • Colloredo G.
        • et al.
        Relationship between steatosis, inflammation, and fibrosis in chronic hepatitis C: a meta-analysis of individual patient data.
        Gastroenterology. 2006; 130: 1636-1642
        • Fartoux L.
        • Chazouilleres O.
        • Wendum D.
        • Poupon R.
        • Serfaty L.
        Impact of steatosis on progression of fibrosis in patients with mild hepatitis C.
        Hepatology. 2005; 41: 82-87
        • Mallat A.
        • Lotersztajn S.
        Endocannabinoids and their receptors in the liver.
        Am J Physiol Gastrointest Liver Physiol. 2008; 294: G9-G12
        • Mallat A.
        • Lotersztajn S.
        Endocannabinoids as novel mediators of liver diseases.
        J Endocrinol Invest. 2006; 29: 58-65
        • Pacher P.
        • Batkai S.
        • Kunos G.
        The endocannabinoid system as an emerging target of pharmacotherapy.
        Pharmacol Rev. 2006; 58: 389-462
        • Chen K.
        • Kandel D.B.
        Predictors of cessation of marijuana use: an event history analysis.
        Drug Alcohol Depend. 1998; 50: 109-121
        • Swift W.
        • Hall W.
        • Copeland J.
        One year follow-up of cannabis dependence among long-term users in Sydney, Australia.
        Drug Alcohol Depend. 2000; 59: 309-318
        • Mallat A.
        • Teixeira-Clerc F.
        • Deveaux V.
        • Lotersztajn S.
        Cannabinoid receptors as new targets of antifibrosing strategies during chronic liver diseases.
        Expert Opin Ther Targets. 2007; 11: 403-409
        • Lotersztajn S.
        • Teixeira-Clerc F.
        • Julien B.
        • Deveaux V.
        • Ichigotani Y.
        • Manin S.
        • et al.
        CB2 receptors as new therapeutic targets for liver diseases.
        Br J Pharmacol. 2008; 153: 286-289
        • Piomelli D.
        • Giuffrida A.
        • Calignano A.
        • Rodriguez de Fonseca F.
        The endocannabinoid system as a target for therapeutic drugs.
        Trends Pharmacol Sci. 2000; 21: 218-224
        • Di Marzo V.
        • Bifulco M.
        • De Petrocellis L.
        The endocannabinoid system and its therapeutic exploitation.
        Nat Rev Drug Discov. 2004; 3: 771-784
        • Julien B.
        • Grenard P.
        • Teixeira-Clerc F.
        • Van Nhieu J.T.
        • Li L.
        • Karsak M.
        • et al.
        Antifibrogenic role of the cannabinoid receptor CB2 in the liver.
        Gastroenterology. 2005; 128: 742-755
        • Teixeira-Clerc F.
        • Julien B.
        • Grenard P.
        • Tran Van Nhieu J.
        • Deveaux V.
        • Li L.
        • et al.
        CB1 cannabinoid receptor antagonism: a new strategy for the treatment of liver fibrosis.
        Nat Med. 2006; 12: 671-676
        • Fernandez-Rodriguez C.M.
        • Romero J.
        • Petros T.J.
        • Bradshaw H.
        • Gasalla J.M.
        • Gutierrez M.L.
        • et al.
        Circulating endogenous cannabinoid anandamide and portal, systemic and renal hemodynamics in cirrhosis.
        Liver Int. 2004; 24: 477-483
        • Batkai S.
        • Jarai Z.
        • Wagner J.A.
        • Goparaju S.K.
        • Varga K.
        • Liu J.
        • et al.
        Endocannabinoids acting at vascular CB1 receptors mediate the vasodilated state in advanced liver cirrhosis.
        Nat Med. 2001; 7: 827-832
        • Siegmund S.V.
        • Qian T.
        • de Minicis S.
        • Harvey-White J.
        • Kunos G.
        • Vinod K.Y.
        • et al.
        The endocannabinoid 2-arachidonoyl glycerol induces death of hepatic stellate cells via mitochondrial reactive oxygen species.
        FASEB J. 2007; 21: 2798-2806
        • Yang Y.Y.
        • Lin H.C.
        • Huang Y.T.
        • Lee T.Y.
        • Hou M.C.
        • Wang Y.W.
        • et al.
        Effect of chronic CB1 cannabinoid receptor antagonism on livers of rats with biliary cirrhosis.
        Clin Sci (Lond). 2007; 112: 533-542
        • Hezode C.
        • Roudot-Thoraval F.
        • Nguyen S.
        • Grenard P.
        • Julien B.
        • Zafrani E.S.
        • et al.
        Daily cannabis smoking as a risk factor for progression of fibrosis in chronic hepatitis C.
        Hepatology. 2005; 42: 63-71
        • Ishida J.H.
        • Jin C.
        • Bacchetti P.
        • Tan V.
        • Peters M.
        • Terrault A.
        Influence of cannabis use on severity of hepatitis C disease.
        Clin Gastroenterol Hepatol. 2008; 6: 69-75
        • Castera L.
        • Hezode C.
        • Roudot-Thoraval F.
        • Lonjon I.
        • Zafrani E.S.
        • Pawlotsky J.M.
        • et al.
        Effect of antiviral treatment on evolution of liver steatosis in patients with chronic hepatitis C: indirect evidence of a role of hepatitis C virus genotype 3 in steatosis.
        Gut. 2004; 53: 420-424
        • Asselah T.
        • Rubbia-Brandt L.
        • Marcellin P.
        • Negro F.
        Steatosis in chronic hepatitis C: why does it really matter?.
        Gut. 2006; 55: 123-130
        • Castera L.
        • Chouteau P.
        • Hezode C.
        • Zafrani E.S.
        • Dhumeaux D.
        • Pawlotsky J.M.
        Hepatitis C virus-induced hepatocellular steatosis.
        Am J Gastroenterol. 2005; 100: 711-715
        • Osei-Hyiaman D.
        • Depetrillo M.
        • Pacher P.
        • Liu J.
        • Radaeva S.
        • Batkai S.
        • et al.
        Endocannabinoid activation at hepatic CB(1) receptors stimulates fatty acid synthesis and contributes to diet-induced obesity.
        J Clin Invest. 2005; 115: 1298-1305
        • Gary-Bobo M.
        • Elachouri G.
        • Gallas J.F.
        • Janiak P.
        • Marini P.
        • Ravinet-Trillou C.
        • et al.
        Rimonabant reduces obesity-associated hepatic steatosis and features of metabolic syndrome in obese Zucker fa/fa rats.
        Hepatology. 2007; 46: 122-129
        • Deveaux V.
        • Ichitogani Y.
        • Teixeira-Clerc F.
        • Manin S.
        • Tran-Van Nhieu J.
        • Karsak M.
        • et al.
        CB2 receptor antagonism reduces diet-induced obesity, insulin resistance and hepatic steatosis.
        Hepatology. 2007; 46: 308A
        • Hezode C.
        • Zafrani E.S.
        • Roudot-Thoraval F.
        • Costentin C.
        • Hessami A.
        • Bouvier-Alias M.
        • et al.
        Daily cannabis use, a novel risk factor of steatosis severity in patients with chronic hepatitis C.
        Gastroenterology. 2008; 134: 432-439
        • Bifulco M.
        • Grimaldi C.
        • Gazzerro P.
        • Pisanti S.
        • Santoro A.
        Rimonabant: just an antiobesity drug? Current evidence on its pleiotropic effects.
        Mol Pharmacol. 2007; 71: 1445-1456
        • Negro F.
        Insulin resistance and HCV: will new knowledge modify clinical management?.
        J Hepatol. 2006; 45: 514-519