Research Article| Volume 48, ISSUE 6, P974-982, June 2008

Quantification of liver perfusion with [15O]H2O-PET and its relationship with glucose metabolism and substrate levels

Published:March 04, 2008DOI:


      Hepatic perfusion plays an important role in liver physiology and disease. This study was undertaken to (a) validate the use of Positron Emission Tomography (PET) and oxygen-15-labeled water ([15O]H2O) to quantify hepatic and portal perfusion, and (b) examine relationships between portal perfusion and liver glucose and lipid metabolism.


      Liver [15O]H2O-PET images were obtained in 14 pigs during fasting or hyperinsulinemia. Carotid arterial and portal venous blood were sampled for [15O]H2O activity; Doppler ultrasonography was used invasively as the reference method. A single arterial input compartment model was developed to estimate portal tracer kinetics and liver perfusion. Endogenous glucose production (EGP) and insulin-mediated whole body glucose uptake (wbGU) were determined by standard methods.


      Hepatic arterial and portal venous perfusions were 0.15 ± 0.07 and 1.11 ± 0.34 ml/min/ml of tissue, respectively. The agreement between ultrasonography and [15O]H2O-PET was good for total and portal liver perfusion, and poor for arterial perfusion. Portal perfusion was correlated with EGP (r = +0.62, p = 0.03), triglyceride (r = +0.66, p = 0.01), free fatty acid levels (r = +0.76, p = 0.003), and plasma lactate levels (r = −0.81, p = 0.0009).


      Estimates of liver perfusion by [15O]H2O-PET compared well with those by ultrasonography. The method allowed to predict portal tracer concentrations which is essential in human studies. Portal perfusion may affect liver nutrient handling.


      PET (Positron Emission Tomography), EGP (endogenous glucose production), wbGU (whole body glucose uptake), [15O]H2O (15-oxygen-labeled water)


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Journal of Hepatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Duvoux C.
        • Radier C.
        • Roudot-Thoraval F.
        • Maille F.
        • Anglade M.C.
        • Van Nhieu J.T.
        • et al.
        Low-grade steatosis and major changes in portal flow as new prognostic factors in steroid-treated alcoholic hepatitis.
        Hepatology. 2004; 40: 1370-1378
        • Magalotti D.
        • Marchesini G.
        • Ramilli S.
        • Berzigotti A.
        • Bianchi G.
        • Zoli M.
        Splanchnic haemodynamics in non-alcoholic fatty liver disease: effect of a dietary/pharmacological treatment. A pilot study.
        Dig Liver Dis. 2004; 36: 406-411
        • Bearn A.G.
        • Billing B.
        • Edholm O.G.
        • Sherlock S.
        Hepatic blood flow and carbohydrate changes in man during fainting.
        J Physiol. 1951; 115: 442-455
        • Topping D.L.
        • Storer G.B.
        • Trimble R.P.
        Effects of flow rate and insulin on triacylglycerol secretion by perfused rat liver.
        Am J Physiol. 1988; 255: E306-E313
        • Arai K.
        • Matsui O.
        • Takashima T.
        • Ida M.
        • Nishida Y.
        Focal spared areas in fatty liver caused by regional decreased portal flow.
        AJR Am J Roentgenol. 1988; 151: 300-302
        • Gabata T.
        • Kadoya M.
        • Matsui O.
        • Ueda K.
        • Kawamori Y.
        • Terayama N.
        • et al.
        Peritumoral spared area in fatty liver: correlation between opposed-phase gradient-echo MR imaging and CT arteriography.
        Abdom Imaging. 2001; 26: 384-389
        • Katz M.L.
        • Bergmann E.N.
        Simultaneous measurement of hepatic and portal venous blood flow in the sheep and dog.
        Am J Physiol. 1969; 216: 946-952
        • Johnson D.J.
        • Muhlbacher F.
        • Wilmore D.W.
        Measurement of hepatic blood flow.
        J Surg Res. 1985; 39: 470-481
        • Ziegler S.I.
        • Haberkorn U.
        • Byrne H.
        • Tong C.
        • Kaja S.
        • Richolt J.A.
        • et al.
        Measurement of liver blood flow using oxygen-15 labelled water and dynamic positron emission tomography: limitations of model description.
        Eur J Nucl Med. 1996; 23: 169-177
        • Greenway C.V.
        Hepatic plethysmography.
        in: Lautt W.W. Hepatic circulation in health and disease. Raven Press, New York1981: 41-54
        • Anderson M.F.
        Pulsed Doppler ultrasonic flowmeter: application to the study of hepatic blood flow.
        in: Granger D.N. Bulkley G.B. Measurement of blood flow applications to the splanchnic circulation. Williams & Wilkins, Baltimore1981: 395-398
        • Huet P.M.
        • Goresky C.A.
        • Villeneuve J.P.
        • Marleau D.
        Assessment of liver microcirculation in human cirrhosis.
        J Clin Invest. 1982; 70: 1234-1244
        • Seifalian A.M.
        • Piasecki C.
        • Agarwal A.
        • Davidson B.R.
        The effect of graded steatosis on flow in the hepatic parenchymal microcirculation.
        Transplantation. 1999; 68: 780-784
        • Ruotsalainen U.
        • Raitakari M.
        • Nuutila P.
        • Oikonen V.
        • Sipila H.
        • Teras M.
        • et al.
        Quantitative blood flow measurement of skeletal muscle using oxygen-15-water and PET.
        J Nucl Med. 1997; 38: 314-319
        • Viljanen K.A.
        • Lonnroth P.
        • Parkkola R.
        • Peltoniemi P.
        • Asola M.
        • Viljanen T.
        • et al.
        Glucose uptake and perfusion in subcutaneous and visceral adipose tissue during insulin stimulation in nonobese and obese humans.
        J Clin Endocrinol Metab. 2002; 87: 3902-3910
        • Bergmann S.R.
        • Fox K.A.
        • Rand A.L.
        • McElvany K.D.
        • Welch M.J.
        • Markham J.
        • et al.
        Quantification of regional myocardial blood flow in vivo with H215O.
        Circulation. 1984; 70: 724-733
        • Herscovitch P.
        • Markham J.
        • Raichle M.E.
        Brain blood flow measured with intravenous H215O. I. Theory and error analysis.
        J Nucl Med. 1983; 24: 782-789
        • Raichle M.E.
        • Martin W.R.W.
        • Herscovitch P.
        • Mintun M.A.
        • Markham J.
        Brain blood flow measured with intravenous H215O. II. Implementation and validation.
        J Nucl Med. 1983; 24: 790-798
        • Taniguchi H.
        • Kunishima S.
        • Koh T.
        The reproducibility of independently measuring human regional hepatic arterial, portal and total hepatic blood flow using [15O]water and positron emission tomography.
        Nucl Med Commun. 2003; 24: 497-501
        • Taniguchi H.
        • Yamaguchi A.
        • Kunishima S.
        • Koh T.
        • Masuyama M.
        • Koyama H.
        • et al.
        Using the spleen for time-delay correction of the input function in measuring hepatic blood flow with oxygen-15 water by dynamic PET.
        Ann Nucl Med. 1999; 13: 215-221
        • Taniguchi H.
        • Oguro A.
        • Koyama H.
        • Masuyama M.
        • Takahashi T.
        Analysis of models for quantification of arterial and portal blood flow in the human liver using PET.
        J Comput Assist. 1996; 20: 135-144
        • Munk O.L.
        • Bass L.
        • Feng H.
        • Keiding S.
        Determination of regional flow by use of intravascular PET tracers: microvascular theory and experimental validation for pig livers.
        J Nucl Med. 2003; 44: 1862-1870
        • Iozzo P.
        • Jarvisalo M.J.
        • Kiss J.
        • Borra R.
        • Naum G.A.
        • Viljanen A.
        • et al.
        Quantification of liver glucose metabolism by positron emission tomography: validation study in pigs.
        Gastroenterology. 2007; 132: 531-542
        • Iozzo P.
        • Gastaldelli A.
        • Jarvisalo M.J.
        • Kiss J.
        • Borra R.
        • Buzzigoli E.
        • et al.
        18F-FDG assessment of glucose disposal and production rates during fasting and insulin stimulation: a validation study.
        J Nucl Med. 2006; 47: 1016-1022
        • Iozzo P.
        • Hallsten K.
        • Oikonen V.
        • Virtanen K.A.
        • Kemppainen J.
        • Solin O.
        • et al.
        Insulin-mediated hepatic glucose uptake is impaired in type 2 diabetes: evidence for a relationship with glycemic control.
        J Clin Endocrinol Metab. 2003; 88: 2055-2060
        • Muscelli E.
        • Mari A.
        • Natali A.
        • Astiarraga B.D.
        • Camastra S.
        • Frascerra S.
        • et al.
        Impact of incretin hormones on beta-cell function in subjects with normal or impaired glucose tolerance.
        Am J Physiol Endocrinol Metab. 2006; 291: E1144-E1150
        • Kety S.S.
        • Schmidt C.F.
        The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values.
        J Clin Invest. 1948; 27: 476-483
      1. SAAM Institute 1998 SAAM II User’s guide version 1.1.1. WA: SAAM Institute, Seattle.

        • Cobelli C.
        • Foster D.
        • Toffolo G.
        Tracer kinetics in biomedical research: from data to model.
        Kluwer Academic/Plenum, New York2001
        • Bland J.M.
        • Altman D.G.
        Statistical methods for assessing agreement between two methods of clinical measurement.
        Lancet. 1986; 1: 307-310
        • Keiding S.
        • Munk O.L.
        • Vilstrup H.
        • Nielsen D.T.
        • Roelsgaard K.
        • Bass L.
        Hepatic microcirculation assessed by positron emission tomography of first pass ammonia metabolism in porcine liver.
        Liver Int. 2005; 25: 171-176
        • Sherman I.A.
        • Dlugosz J.A.
        • Barker F.
        • Sadeghi F.M.
        • Pang K.S.
        Dynamics of arterial and portal venous flow interactions in perfused rat liver: an intravital microscopic study.
        Am J Physiol. 1996; 271: G201-G210
        • Doi R.
        • Inoue K.
        • Kogire M.
        • Sumi S.
        • Takaori K.
        • Suzuki T.
        • et al.
        Simultaneous measurement of hepatic arterial and portal venous flows by transit time ultrasonic volume flowmetry.
        Surg Gynecol Obstet. 1988; 167: 65-69
        • Kleber G.
        • Steudel N.
        • Behrmann C.
        • Zipprich A.
        • Hübner G.
        • Lotterer E.
        • et al.
        Hepatic arteriel flow volume and reserve in patients with cirrhosis: use of intra-arteriel Doppler and adenosine infusion.
        Gastroenterology. 1999; 116: 906-914
        • Hubner G.H.
        • Steudel N.
        • Kleber G.
        • Behrmann C.
        • Lotterer E.
        • Fleig W.E.
        Hepatic arteriel blood flow velocities: assessment by transcutaneous and intravascular Doppler sonography.
        J Hepatol. 2000; 32: 893-899
        • Materne R.
        • Van Beers B.E.
        • Smith A.M.
        • Leconte I.
        • Jamart J.
        • Dehoux J.P.
        • et al.
        Non-invasive quantification of liver perfusion with dynamic computed tomography and a dual-input one-compartmental model.
        Clin Sci (Lond). 2000; 99: 517-525
        • Satake S.
        • Moore M.C.
        • Igawa K.
        • Converse M.
        • Farmer B.
        • Neal D.W.
        • et al.
        Direct and indirect effects of insulin on glucose uptake and storage by the liver.
        Diabetes. 2002; 51: 1663-1671
        • Simonsen L.
        • Coker R.
        • Mulla N.A.L.
        • Kjaer M.
        • Bulow J.
        The effect of insulin and glucagon on splanchnic oxygen consumption.
        Liver. 2002; 22: 459-466
        • Capaldo B.
        • Gastaldelli A.
        • Antoniello S.
        • Auletta M.
        • Pardo F.
        • Ciociaro D.
        • et al.
        Splanchnic and leg substrate exchange after ingestion of a natural mixed meal in humans.
        Diabetes. 1999; 48: 958-966
        • Jakob S.M.
        • Tenhunen J.J.
        • Laitinen S.
        • Heino A.
        • Alhava E.
        • Takala J.
        Effects of systemic arterial hypoperfusion on splanchnic hemodynamics and hepatic arterial buffer response in pigs.
        Am J Physiol Gastrointest Liver Physiol. 2001; 280: G819-G827
        • Seifalian A.M.
        • El-Desoky A.
        • Davidson B.R.
        Hepatic indocyanine green uptake and excretion in a rabbit model of steatosis.
        Eur Surg Res. 2001; 33: 193-201
        • Lautt W.W.
        Relationship between hepatic blood flow and overall metabolism: the hepatic arterial buffer response.
        Fed Proc. 1983; 42: 1662-1666
        • Kakkos S.K.
        • Yarmenitis S.D.
        • Tsamandas A.C.
        • Gogos C.A.
        • Kalfarentzos F.
        Fatty liver in obesity: relation to Doppler perfusion index measurement of the liver.
        Scand J Gastroenterol. 2000; 35: 976-980