Research Article| Volume 53, ISSUE 4, P663-670, October 2010

Pancreatic Duodenal Homeobox-1 de novo expression drives cholangiocyte neuroendocrine-like transdifferentiation

      Background & Aims

      Reactive cholangiocytes acquire a neuroendocrine-like phenotype, with synthesis and local release of neuropeptides and hormones. The mechanism that drives such phenotypical changes is still undefined. Pancreatic Duodenal Homeobox-1 (PDX-1) is a transcription factor required for pancreatic development, that sustains pancreatic beta-cell response to injury and insulin synthesis. PDX-1 induces neuroendocrine-like transition of pancreatic ductal cells. Cholangiocyte response to injury is modulated by Glucagon-Like Peptide-1 Receptor (GLP-1R), which, in the pancreas, activates PDX-1. We wanted to verify whether PDX-1 plays any role in cholangiocyte neuroendocrine-like transdifferentiation in response to injury.


      PDX-1 expression was assessed in cholangiocytes from normal and one week bile duct ligated (BDL) rats. Changes in PDX-1 expression and activation upon GLP-1R activation were then assayed. The effects of the lack of PDX-1 in cholangiocytes were studied in vitro by siRNA and in vivo by the employment of PDX-1-deficient (+/−) mice.


      BDL but not normal cholangiocytes express PDX-1. GLP-1R activation elicits, in a PI3K-dependent fashion, PDX-1 expression, together with its nuclear translocation. In vitro, GLP-1R-induced increases in VEGF and IGF-1 mRNA expression were blunted in cells with PDX-1 siRNA. In vivo, the VEGF and IGF-1 mRNA expression in the liver after one week BDL was markedly reduced in PDX-1-deficient mice, together with reduced bile duct mass.


      In response to injury, reactive cholangiocytes de novo express PDX-1, the activation of which allows cholangiocytes to synthesize IGF-1 and VEGF. These findings suggest that PDX-1 drives the acquisition of the neuroendocrine-like phenotype by cholangiocytes in response to cholestatic injury.


      PDX-1 (Pancreatic Duodenal Homeobox-1), NRC (normal rat cultured cholangiocytes), BDL (bile duct ligation), cAMP (cyclic adenosine 3′,5′-monophosphate), FBS (fetal bovine serum), PKA (protein kinase A), PI3K (phosphatidyl-inositol-3-kinase), PCNA (proliferating cell nuclear antigen)


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Journal of Hepatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Lazaridis K.N.
        • Strazzabosco M.
        • LaRusso N.F.
        The cholangiopathies: disorders of biliary epithelia.
        Gastroenterology. 2004; 127: 1565-1577
        • Alvaro D.
        • Mancino M.G.
        • Glaser S.
        • Gaudio E.
        • Marzioni M.
        • Francis H.
        • et al.
        Proliferating cholangiocytes: a neuroendocrine compartment in the diseased liver.
        Gastroenterology. 2007; 132: 415-431
        • Offield M.F.
        • Jetton T.L.
        • Labosky P.A.
        • Ray M.
        • Stein R.W.
        • Magnuson M.A.
        • et al.
        PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum.
        Development. 1996; 122: 983-995
        • Dutta S.
        • Bonner-Weir S.
        • Montminy M.
        • Wright C.
        Regulatory factor linked to late-onset diabetes?.
        Nature. 1998; 392: 560
        • Stanojevic V.
        • Yao K.M.
        • Thomas M.K.
        The coactivator Bridge-1 increases transcriptional activation by pancreas duodenum homeobox-1 (PDX-1).
        Mol Cell Endocrinol. 2005; 237: 67-74
        • Melloul D.
        • Tsur A.
        • Zangen D.
        Pancreatic Duodenal Homeobox (PDX-1) in health and disease.
        J Pediatr Endocrinol Metab. 2002; 15: 1461-1472
        • Deramaudt T.B.
        • Sachdeva M.M.
        • Wescott M.P.
        • Chen Y.
        • Stoffers D.A.
        • Rustgi A.K.
        The PDX1 homeodomain transcription factor negatively regulates the pancreatic ductal cell-specific keratin 19 promoter.
        J Biol Chem. 2006; 281: 38385-38395
        • Koizumi M.
        • Doi R.
        • Fujimoto K.
        • Ito D.
        • Toyoda E.
        • Mori T.
        • et al.
        Pancreatic epithelial cells can be converted into insulin-producing cells by GLP-1 in conjunction with virus-mediated gene transfer of pdx-1.
        Surgery. 2005; 138: 125-133
        • Grapin-Botton A.
        Ductal cells of the pancreas.
        Int J Biochem Cell Biol. 2005; 37: 504-510
        • Ferber S.
        • Halkin A.
        • Cohen H.
        • Ber I.
        • Einav Y.
        • Goldberg I.
        • et al.
        Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia.
        Nat Med. 2000; 6: 568-572
        • Sapir T.
        • Shternhall K.
        • Meivar-Levy I.
        • Blumenfeld T.
        • Cohen H.
        • Skutelsky E.
        • et al.
        Cell-replacement therapy for diabetes: generating functional insulin-producing tissue from adult human liver cells.
        Proc Natl Acad Sci USA. 2005; 102: 7964-7969
        • Miyatsuka T.
        • Kaneto H.
        • Kajimoto Y.
        • Hirota S.
        • Arakawa Y.
        • Fujitani Y.
        • et al.
        Ectopically expressed PDX-1 in liver initiates endocrine and exocrine pancreas differentiation but causes dysmorphogenesis.
        Biochem Biophys Res Commun. 2003; 310: 1017-1025
        • Baggio L.L.
        • Drucker D.J.
        Biology of incretins: GLP-1 and GIP.
        Gastroenterology. 2007; 132: 2131-2157
        • Marzioni M.
        • Alpini G.
        • Saccomanno S.
        • Candelaresi C.
        • Venter J.
        • Rychlicki C.
        • et al.
        Exendin-4, a glucagon-like peptide 1 receptor agonist, protects cholangiocytes from apoptosis.
        Gut. 2009; 58: 990-997
        • Marzioni M.
        • Alpini G.
        • Saccomanno S.
        • Candelaresi C.
        • Venter J.
        • Rychlicki C.
        • et al.
        Glucagon-like peptide-1 and its receptor agonist exendin-4 modulate cholangiocyte adaptive response to cholestasis.
        Gastroenterology. 2007; 133: 244-255
        • De Minicis S.
        • Seki E.
        • Uchinami H.
        • Kluwe J.
        • Zhang Y.
        • Brenner D.A.
        • et al.
        Gene expression profiles during hepatic stellate cell activation in culture and in vivo.
        Gastroenterology. 2007; 132: 1937-1946
        • Gaudio E.
        • Barbaro B.
        • Alvaro D.
        • Glaser S.
        • Francis H.
        • Franchitto A.
        • et al.
        Administration of r-VEGF-A prevents hepatic artery ligation-induced bile duct damage in bile duct ligated rats.
        Am J Physiol Gastrointest Liver Physiol. 2006; 291: G307-G317
        • Gaudio E.
        • Barbaro B.
        • Alvaro D.
        • Glaser S.
        • Francis H.
        • Ueno Y.
        • et al.
        Vascular endothelial growth factor stimulates rat cholangiocyte proliferation via an autocrine mechanism.
        Gastroenterology. 2006; 130: 1270-1282
        • Alvaro D.
        • Metalli V.D.
        • Alpini G.
        • Onori P.
        • Franchitto A.
        • Barbaro B.
        • et al.
        The intrahepatic biliary epithelium is a target of the growth hormone/insulin-like growth factor 1 axis.
        J Hepatol. 2005; 43: 875-883
        • Alvaro D.
        • Macarri G.
        • Mancino M.G.
        • Marzioni M.
        • Bragazzi M.
        • Onori P.
        • et al.
        Serum and biliary insulin-like growth factor I and vascular endothelial growth factor in determining the cause of obstructive cholestasis.
        Ann Intern Med. 2007; 147: 451-459
        • Beuers U.
        • Goke B.
        GLP-1 analogues: a new therapeutic approach to prevent ductopenia in cholangiopathies?.
        Gut. 2009; 58: 902-903
        • Rosenberg L.
        Induction of islet cell neogenesis in the adult pancreas: the partial duct obstruction model.
        Microsc Res Tech. 1998; 43: 337-346
        • Delisle J.C.
        • Martignat L.
        • Bach J.M.
        • Bosch S.
        • Louzier V.
        Bipotential mouse embryonic liver (BMEL) cells spontaneously express Pdx1 and Ngn3 but do not undergo further pancreatic differentiation upon Hes1 down-regulation.
        BMC Res Notes. 2008; 1: 136
        • Fukuda A.
        • Kawaguchi Y.
        • Furuyama K.
        • Kodama S.
        • Kuhara T.
        • Horiguchi M.
        • et al.
        Loss of the major duodenal papilla results in brown pigment biliary stone formation in pdx1 null mice.
        Gastroenterology. 2006; 130: 855-867
        • Al-Quobaili F.
        • Montenarh M.
        Pancreatic duodenal homeobox factor-1 and diabetes mellitus type 2 (review).
        Int J Mol Med. 2008; 21: 399-404
        • Deutsch G.
        • Jung J.
        • Zheng M.
        • Lora J.
        • Zaret K.S.
        A bipotential precursor population for pancreas and liver within the embryonic endoderm.
        Development. 2001; 128: 871-881
        • Shanmukhappa K.
        • Mourya R.
        • Sabla G.E.
        • Degen J.L.
        • Bezerra J.A.
        Hepatic to pancreatic switch defines a role for hemostatic factors in cellular plasticity in mice.
        Proc Natl Acad Sci USA. 2005; 102: 10182-10187
        • Meivar-Levy I.
        • Sapir T.
        • Gefen-Halevi S.
        • Aviv V.
        • Barshack I.
        • Onaca N.
        • et al.
        Pancreatic and duodenal homeobox gene 1 induces hepatic dedifferentiation by suppressing the expression of CCAAT/enhancer-binding protein beta.
        Hepatology. 2007; 46: 898-905
        • Maitra A.
        • Kern S.E.
        • Hruban R.H.
        Molecular pathogenesis of pancreatic cancer.
        Best Pract Res Clin Gastroenterol. 2006; 20: 211-226