Advertisement
Research Article| Volume 53, ISSUE 4, P702-712, October 2010

Download started.

Ok

Atorvastatin attenuates hepatic fibrosis in rats after bile duct ligation via decreased turnover of hepatic stellate cells

      Background & Aims

      Activation of hepatic stellate cells (HSC) and transdifferentiation to myofibroblasts following liver injury is the main culprit for hepatic fibrosis. Myofibroblasts show increased proliferation, migration, contraction, and production of extracellular matrix (ECM). In vitro, HMG-CoA reductase inhibitors (statins) inhibit proliferation and induce apoptosis of myofibroblastic HSC. To investigate the antifibrotic effects of atorvastatin in vivo we used bile duct ligated rats (BDL).

      Methods

      BDL rats were treated with atorvastatin (15 mg/kg/d) immediately after ligation (prophylactically) or in on-going fibrosis (therapeutically). Fibrosis was assessed by hydroxyproline content and Sirius-red staining. The activation of HSC was investigated by analysis of αSMA expression. mRNA levels of cytokines and procollagen were analyzed by RT-PCR, and MMP-2 activity by zymography. Proliferation was assessed by expression of cathepsins (B and D), proliferating cell nuclear antigen (PCNA), and Ki67-staining. Apoptosis was characterized by caspase-3 activity, cleavage of PARP-1, and TUNEL assay. Hepatic inflammation was investigated by serum parameters and liver histology.

      Results

      Prophylactic and early therapy with atorvastatin significantly attenuated fibrosis and HSC activation. Later therapy lacked significant effects on fibrosis but reduced profibrotic cytokine expression and led to a more quiescent state of HSC with less proliferation and apoptosis, while hepatic inflammation did not change.

      Conclusions

      This study shows that very early atorvastatin treatment inhibits HSC activation and fibrosis in the BDL model in vivo, while late treatment reduces HSC turnover and activity. Our findings underline that long-term studies in humans are warranted.

      Abbreviations:

      HSC (hepatic stellate cells), ECM (extracellular matrix), TGFβ (transforming growth factor-β), CTGF (connective tissue growth factor), PDGFβ-R (platelet-derived growth factor-β receptor), HMG-CoA-R (3-hydroxy-3-methylglutaryl-coenzyme-A-reductase), BDL (bile duct ligation), PCNA (proliferating cell nuclear antigen), PARP-1 (poly (ADP ribose) polymerase), ELISA (enzyme-linked immunosorbent assay), AST (aspartate aminotransferase), ALT (alanine aminotransferase), HCl (hydrogen chloride), αSMA (α-smooth muscle actin), SDS–PAGE (sodium dodecyl sulfate–polyacrylamide gel electrophoresis), RT-PCR (real-time polymerase chain reaction), CT-value (number of cycles), SEM (standard error of the mean), MMP-2 (matrix metalloproteinase-2), GAPDH (glyceraldehydes-3-P dehydrogenase)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Hepatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Abraldes J.G.
        • Rodriguez-Vilarrupla A.
        • Graupera M.
        • Zafra C.
        • Garcia-Caldero H.
        • Garcia-Pagan J.C.
        • et al.
        Simvastatin treatment improves liver sinusoidal endothelial dysfunction in CCl(4) cirrhotic rats.
        J Hepatol. 2007; 46: 1040-1046
        • Aprigliano I.
        • Dudas J.
        • Ramadori G.
        • Saile B.
        Atorvastatin induces apoptosis by a caspase-9-dependent pathway: an in vitro study on activated rat hepatic stellate cells.
        Liver Int. 2008; 28: 546-557
        • Bataller R.
        • Brenner D.A.
        Liver fibrosis.
        J Clin Invest. 2005; 115: 209-218
        • Becker G.J.
        • Perkovic V.
        • Hewitson T.D.
        Pharmacological intervention in renal fibrosis and vascular sclerosis.
        J Nephrol. 2001; 14: 332-339
        • Black A.E.
        • Hayes R.N.
        • Roth B.D.
        • Woo P.
        • Woolf T.F.
        Metabolism and excretion of atorvastatin in rats and dogs.
        Drug Metab Dispos. 1999; 27: 916-923
        • Dinges H.P.
        • Redl H.
        Comparative evaluation of immunohistochemistry and enzyme histochemistry for granulocyte visualization in formalin-fixed and paraffin-embedded liver and lung biopsies.
        Histochemistry. 1983; 77: 9-14
        • Friedman S.
        The hepatic stellate cell.
        in: Bedossa P. Semin Liver Dis. Thieme, New York2001: 307-452
        • Friedman S.L.
        Mechanisms of hepatic fibrogenesis.
        Gastroenterology. 2008; 134: 1655-1669
        • Gardner J.L.
        • Turner S.M.
        • Bautista A.
        • Lindwall G.
        • Awada M.
        • Hellerstein M.K.
        Measurement of liver collagen synthesis by heavy water labeling: effects of profibrotic toxicants and antifibrotic interventions.
        Am J Physiol Gastrointest Liver Physiol. 2007; 292: G1695-G1705
        • Gianella A.
        • Nobili E.
        • Abbate M.
        • Zoja C.
        • Gelosa P.
        • Mussoni L.
        • et al.
        Rosuvastatin treatment prevents progressive kidney inflammation and fibrosis in stroke-prone rats.
        Am J Pathol. 2007; 170: 1165-1177
        • Gressner A.M.
        • Weiskirchen R.
        Modern pathogenetic concepts of liver fibrosis suggest stellate cells and TGF-β as major players and therapeutic targets.
        J Cell Mol Med. 2006; 10: 76-99
        • Gross Jr., J.B.
        • Reichen J.
        • Zeltner T.B.
        • Zimmermann A.
        The evolution of changes in quantitative liver function tests in a rat model of biliary cirrhosis: correlation with morphometric measurement of hepatocyte mass.
        Hepatology. 1987; 7: 457-463
        • Hillebrandt S.
        • Goos C.
        • Matern S.
        • Lammert F.
        Genome-wide analysis of hepatic fibrosis in inbred mice identifies the susceptibility locus Hfib1 on chromosome 15.
        Gastroenterology. 2002; 123: 2041-2051
        • Jamall I.S.
        • Finelli V.N.
        • Que Hee S.S.
        A simple method to determine nanogram levels of 4-hydroxyproline in biological tissues.
        Anal Biochem. 1981; 112: 70-75
        • Kato M.
        • Iwamoto H.
        • Higashi N.
        • Sugimoto R.
        • Uchimura K.
        • Tada S.
        • et al.
        Role of Rho small GTP binding protein in the regulation of actin cytoskeleton in hepatic stellate cells.
        J Hepatol. 1999; 31: 91-99
        • Kucich U.
        • Rosenbloom J.C.
        • Shen G.
        • Abrams W.R.
        • Hamilton A.D.
        • Sebti S.M.
        • et al.
        TGF-β1 stimulation of fibronectin transcription in cultured human lung fibroblasts requires active geranylgeranyl transferase I, phosphatidylcholine-specific phospholipase C, protein kinase C-delta, and p38, but not erk1/erk2.
        Arch Biochem Biophys. 2000; 374: 313-324
        • Laufs U.
        • Marra D.
        • Node K.
        • Liao J.K.
        3-Hydroxy-3-methylglutaryl-CoA reductase inhibitors attenuate vascular smooth muscle proliferation by preventing rho GTPase-induced down-regulation of p27(Kip1).
        J Biol Chem. 1999; 274: 21926-21931
        • Moles A.
        • Tarrats N.
        • Fernandez-Checa J.C.
        • Mari M.
        Cathepsins B and D drive hepatic stellate cell proliferation and promote their fibrogenic potential.
        Hepatology. 2009; 49: 1297-1307
        • Moreno M.
        • Ramalho L.N.
        • Sancho-Bru P.
        • Ruiz-Ortega M.
        • Ramalho F.
        • Abraldes J.G.
        • et al.
        Atorvastatin attenuates angiotensin II-induced inflammatory actions in the liver.
        Am J Physiol Gastrointest Liver Physiol. 2009; 296: G147-G156
        • Nie L.
        • Imamura M.
        • Itoh H.
        • Ueno H.
        Pitavastatin enhances the anti-fibrogenesis effects of candesartan, an angiotensin II receptor blocker, on CCl4-induced liver fibrosis in rats.
        J UOEH. 2004; 26: 165-177
        • Oberti F.
        • Pilette C.
        • Rifflet H.
        • Maiga M.Y.
        • Moreau A.
        • Gallois Y.
        • et al.
        Effects of simvastatin, pentoxifylline and spironolactone on hepatic fibrosis and portal hypertension in rats with bile duct ligation.
        J Hepatol. 1997; 26: 1363-1371
        • Parola M.
        • Marra F.
        • Pinzani M.
        Myofibroblast – like cells and liver fibrogenesis: emerging concepts in a rapidly moving scenario.
        Mol Aspects Med. 2008; 29: 58-66
        • Pinzani M.
        PDGF and signal transduction in hepatic stellate cells.
        Front Biosci. 2002; 7: d1720-d1726
        • Rombouts K.
        • Kisanga E.
        • Hellemans K.
        • Wielant A.
        • Schuppan D.
        • Geerts A.
        Effect of HMG-CoA reductase inhibitors on proliferation and protein synthesis by rat hepatic stellate cells.
        J Hepatol. 2003; 38: 564-572
        • Rosenbloom J.
        • Saitta B.
        • Gaidarova S.
        • Sandorfi N.
        • Rosenbloom J.C.
        • Abrams W.R.
        • et al.
        Inhibition of type I collagen gene expression in normal and systemic sclerosis fibroblasts by a specific inhibitor of geranylgeranyl transferase I.
        Arthritis Rheum. 2000; 43: 1624-1632
        • Schulte S.
        • Oidtmann A.
        • Kociok N.
        • Demir M.
        • Odenthal M.
        • Drebber U.
        • et al.
        Hepatocyte expression of angiotensin II type 1 receptor is downregulated in advanced human liver fibrosis.
        Liver Int. 2009; 29: 384-391
        • Schuppan D.
        • Strobel D.
        • Hahn E.G.
        Hepatic fibrosis – therapeutic strategies.
        Digestion. 1998; 59: 385-390
        • Trebicka J.
        • Hennenberg M.
        • Laleman W.
        • Shelest N.
        • Biecker E.
        • Schepke M.
        • et al.
        Atorvastatin lowers portal pressure in cirrhotic rats by inhibition of RhoA/Rho-kinase and activation of endothelial nitric oxide synthase.
        Hepatology. 2007; 46: 242-253
        • Trebicka J.
        • Leifeld L.
        • Hennenberg M.
        • Biecker E.
        • Eckhardt A.
        • Fischer N.
        • et al.
        Hemodynamic effects of urotensin II and its specific receptor antagonist palosuran in cirrhotic rats.
        Hepatology. 2008; 47: 1264-1276
        • Wassmann S.
        • Laufs U.
        • Baumer A.T.
        • Muller K.
        • Ahlbory K.
        • Linz W.
        • et al.
        HMG-CoA reductase inhibitors improve endothelial dysfunction in normocholesterolemic hypertension via reduced production of reactive oxygen species.
        Hypertension. 2001; 37: 1450-1457
        • Watanabe T.
        • Niioka M.
        • Ishikawa A.
        • Hozawa S.
        • Arai M.
        • Maruyama K.
        • et al.
        Dynamic change of cells expressing MMP-2 mRNA and MT1-MMP mRNA in the recovery from liver fibrosis in the rat.
        J Hepatol. 2001; 35: 465-473
        • Watts K.L.
        • Sampson E.M.
        • Schultz G.S.
        • Spiteri M.A.
        Simvastatin inhibits growth factor expression and modulates profibrogenic markers in lung fibroblasts.
        Am J Respir Cell Mol Biol. 2005; 32: 290-300