Advertisement
Research Article| Volume 53, ISSUE 4, P719-723, October 2010

Download started.

Ok

Hepatocellular ballooning in NASH

      Background & Aims

      Hepatocellular ballooning is a key finding in nonalcoholic steatohepatitis (NASH). It is conventionally defined by hemotoxylin and eosin (H&E) staining showing enlarged cells with rarefied cytoplasm and recently by changes in the cytoskeleton. Fat droplets are emerging as important organelles in cell metabolism. To address a possible relation between fat droplets and ballooning, we studied fat staining, H&E, and keratin 18 staining in human NASH.

      Methods

      Sequential staining and high resolution imaging were used to study freshly prepared cryo-sections from 10 patients with histologically confirmed steatohepatitis using oil red O for fat droplet identification, H&E to identify ballooning, and anti-K18 to confirm cytoskeletal changes. High resolution images were captured at each stage using the Aperio Scanscope. To provide ultrastructural correlation, glutaraldehyde-fixed specimens were studied using transmission electron microscopy (TEM) with serial sectioning for localization of ballooned cells by light microscopy and TEM in identical specimens.

      Results

      Serial staining consistently demonstrated that hepatocellular ballooning is associated with fat droplet accumulation evident by oil red O positivity and depletion of cytoplasmic keratin 18 with K-18 positive Mallory–Denk bodies (MDB). TEM confirmed the association between osmium stained fat droplets, MDB formation, and cellular enlargement and suggested droplet-associated dilation of the endoplasmic reticulum.

      Conclusions

      These results indicate a relationship between cellular ballooning, fat droplet accumulation, and cytoskeletal injury in NASH. We speculate that injury to multiple, organelles including fat droplets and endoplasmic reticulum, contribute to this characteristic finding.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Hepatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Yeh M.M.
        • Brunt E.M.
        Pathology of nonalcoholic fatty liver disease.
        Am J Clin Pathol. 2007; 128: 837-847
        • Brunt E.M.
        Non-alcoholic steatohepatitis: definition and pathology.
        Sem Liv Dis. 2001; 21: 3-16
        • Contos M.J.
        • Choudhury J.
        • Mills A.S.
        • Sanyal A.J.
        The histological spectrum of nonalcoholic fatty liver disease.
        Clin Liv Dis. 2004; 8: 481-500
        • Brunt E.M.
        • Neuschwander-Tetri B.A.
        • Oliver D.
        • Wehmeier K.R.
        • Bacon B.R.
        Nonalcoholic steatohepatitis: histologic features and clinical correlations with 30 blinded biopsy specimens.
        Hum Pathol. 2004; 35: 1070-1082
        • Matteoni C.A.
        • Younossi Z.M.
        • Gramlich T.
        • Boparai N.
        • Liu Y.C.
        • McCullough A.J.
        Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity.
        Gastroenterology. 1999; 116: 1413-1419
        • Rafiq N.
        • Bai C.
        • Fang Y.
        • Srishord M.
        • McCullough A.
        • Gramlich T.
        • et al.
        Long-term follow-up of patients with nonalcoholic fatty liver.
        Clin Gastroenterol Hepatol. 2009; 7: 234-238
        • Ekstedt M.
        • Franzén L.E.
        • Mathiesen U.L.
        • Thorelius L.
        • Holmqvist M.
        • Bodemar G.
        • et al.
        Long-term follow-up of patients with NAFLD and elevated liver enzymes.
        Hepatology. 2006; 44: 865-873
        • Gramlich T.
        • Kleiner D.E.
        • McCullough A.J.
        • Matteoni C.A.
        • Boparai N.
        • Younossi Z.M.
        Pathological features associated with fibrosis in nonalcoholic fatty liver disease.
        Hum Pathol. 2004; 35: 196-199
        • Younossi Z.M.
        • Gramlich T.
        • Liu Y.C.
        • Matteoni C.
        • Petrelli M.
        • Goldblum J.
        • et al.
        Nonalcoholic fatty liver disease: assessment of variability in pathological interpretations.
        Mod Pathol. 1998; 11: 560-565
        • Zatloukal K.
        • French S.W.
        • Stumptner C.
        • Strnad P.
        • Harada M.
        • Toivola D.M.
        • et al.
        From Mallory to Mallory–Denk bodies: What, how and why?.
        Exp Cell Res. 2007; 313: 2033-2049
        • Lackner C.
        • Gogg-Kamerer M.
        • Zatloukal K.
        • Stumptner C.
        • Brunt E.M.
        • Denk H.
        Ballooned hepatocytes in steatohepatitis: the value of keratin immunohistochemistry for diagnosis.
        J Hepatol. 2008; 48: 821-828
        • Amidi F.
        • French B.A.
        • Chung D.
        • Halsted C.H.
        • Medici V.
        • French S.W.
        M-30 and 4HNE are sequestered in different aggresomes in the same hepatocytes.
        Exp Mol Pathol. 2007; 83: 296-300
        • Brunt E.M.
        • Janney C.G.
        • Di Bisceglie A.M.
        • Neuschwander-Tetri B.A.
        • Bacon B.R.
        Nonalcoholic steatohepatitis: a proposal for grading and staging the histologic lesions.
        Am J Gastroenterol. 1999; 94: 2467-2474
        • Kleiner D.E.
        • Brunt E.M.
        • Van Natta M.L.
        • Behling C.
        • Contos M.J.
        • Cummings O.W.
        • et al.
        Nonalcoholic steatohepatitis clinical research network. Design and validation of a histologic scoring system for NAFLD.
        Hepatology. 2005; 41: 1313-1321
        • Kleiner D.E.
        • Yeh M.M.
        • Guy C.D.
        • Ferrell L.
        • Cummings O.
        • Contos M.J.
        • et al.
        Creation of a continuous visual scale of ballooned hepatocytes in non-alcoholic fatty liver disease.
        Hepatol. 2008; 48: 815A
        • Phillips M.J.
        • Poucell S.
        • Patterson J.
        • Valencia P.
        The liver: an atlas and text of ultrastructural pathology.
        Raven Press, New York1987 (p. 45–6)
        • Lapis K.
        • Schaff Z.
        Electron microscopy in human medicine.
        in: The Liver. vol. 8. McGraw-Hill, New York1979 (p. 137–57)
        • Caldwell S.H.
        • Redick J.A.
        • Chang C.Y.
        • Davis C.A.
        • Argo C.K.
        • Al Osaimi A.M.
        Enlarged hepatocytes in NAFLD examined with osmium fixation: does microsteatosis underlie cellular ballooning in NASH? (Letter).
        Am J Gastroenterol. 2006; 101: 1677-1678
        • Caldwell S.H.
        • Redick J.A.
        • Davis C.A.
        • Brunt E.M.
        • Lima V.M.
        • Argo C.K.
        • et al.
        Ultrastructural evaluation of hepatocytes with Type 2 Mallory–Denk Bodies: clues to ballooning in nonalcoholic steatohepatitis.
        Hepatology. 2007; 46: 741A
        • Denk H.
        • Stumpter C.
        • Fuchsbichler A.
        • Zatloukal K.
        Alcoholic and nonalcoholic steatohepatitis: histopathologic and pathogenetic considerations.
        Pathologe. 2001; 22: 388-398
        • Ikura Y.
        • Ohsawa M.
        • Suekane T.
        • Fukushima H.
        • Itabe H.
        • Jomura H.
        • et al.
        Localization of oxidized phosphatidylcholine in nonalcoholic fatty liver disease: impact on disease progression.
        Hepatology. 2006; 43: 506-514
        • Fujii H.
        • Ikura Y.
        • Arimoto J.
        • Iezzoni J.C.
        • Park S.H.
        • Itabe H.
        • et al.
        Perilipin, adipophilin and oxidized phosphatidylcholine in human nonalcoholic steatohepatitis.
        J Atheroscler Thromb. 2009; 16: 893-901
        • Straub B.K.
        • Stoeffel P.
        • Heid H.
        • Zimbelmann R.
        • Schirmacher P.
        Differential pattern of lipid droplet-associated proteins and de novo perilipin expression in hepatocyte steatogenesis.
        Hepatology. 2008; 47: 1936-1946
        • Caldwell S.
        • Swerdlow R.
        • Khan E.
        • Iezzoni J.
        • Hespenheide E.
        • Oelsner D.
        • et al.
        Mitochondrial abnormalities in NASH.
        J Hepatol. 1999; 31: 430-434
        • Le T.H.
        • Caldwell S.H.
        • Redick J.A.
        • Sheppard B.L.
        • Davis C.A.
        • Arseneau K.O.
        • et al.
        The zonal distribution of megamitochondria with crystalline inclusions in nonalcoholic steatohepatitis.
        Hepatology. 2004; 39: 1423-1429
        • Caldwell S.H.
        • Patrie J.T.
        • Brunt E.M.
        • Redick J.A.
        • Davis C.A.
        • Park S.H.
        • et al.
        The effects of 48 weeks of rosiglitazone on hepatocyte mitochondria in human nonalcoholic steatohepatitis.
        Hepatology. 2007; 46: 1101-1107
        • Caldwell S.H.
        • Freitas L.A.R.
        • Park S.H.
        • Moreno M.L.V.
        • Redick J.A.
        • Davis C.A.
        • et al.
        Intramitochondrial crystalline inclusions in nonalcoholic steatohepatitis.
        Hepatology. 2009; 49: 1888-1895
        • Fujita K.
        • Nozaki Y.
        • Wada K.
        • Yoneda M.
        • Fujimoto Y.
        • Fujitake M.
        • et al.
        Dysfunctional very-low-density lipoprotein synthesis and release is a key factor in nonalcoholic steatohepatitis pathogenesis.
        Hepatology. 2009; 50: 772-780
        • Ohsaki Y.
        • Cheng J.
        • Suzuki M.
        • Fujita A.
        • Fujimoto T.
        Lipid droplets are arrested in the ER membrane by tight binding of lipidated apolipoprotein B-100.
        J Cell Sci. 2008; 121: 2415-2422
        • Tauchi-Sato K.
        • Ozeki S.
        • Houjou T.
        • Taguchi R.
        • Fujimoto T.
        The surface of lipid droplets is a phospholipid monolayer with a unique fatty acid composition.
        J Biol Chem. 2002; 277: 44507-44512
        • Hermier D.
        • Rousselot-Pailly D.
        • Peresson R.
        • Sellier N.
        Influence of orotic acid and estrogen on hepatic lipid storage and secretion in the goose susceptible to liver steatosis.
        Biochem Biophys Acta. 1994; 1211: 97-106
        • Cairns S.R.
        • Peters T.J.
        Isolation of micro- and macro-droplet fractions from needle biopsy specimens of human liver and determination of the subcellular distribution of the accumulating liver lipids in alcoholic fatty liver.
        Clin Sci. 1984; 67: 337-345
        • Seki S.
        • Kitada T.
        • Yamada T.
        • Sakaguchi H.
        • Nakatani K.
        • Wakasa K.
        In situ detection of lipid peroxidation and oxidative DNA damage in non-alcoholic fatty liver diseases.
        J Hepatol. 2002; 37: 56-62
        • Denk H.
        • Stumptner C.
        • Zatloukal K.
        Mallory bodies revisited.
        J Hepatol. 2000; 32: 689-702
        • Franke W.W.
        • Hergt M.
        • Grund C.
        Rearrangement of the vimentin cytoskeleton during adipose conversion: formation of an intermediate filament cage around lipid globules.
        Cell. 1987; 49: 131-141
        • Schweitzer S.C.
        • Evans R.M.
        Vimentin and lipid metabolism.
        Subcell Biochem. 1998; 31: 437-462
        • Welte M.A.
        • Cermelli S.
        • Griner J.
        • Viera A.
        • Guo Y.
        • Kim D.H.
        • et al.
        Regulation of lipid-droplet transport by the perilipin homolog LSD2.
        Curr Biol. 2005; 15: 1266-1275
        • Albano E.
        • Mottaran E.
        • Occhino G.
        • Reale E.
        • Vidali M.
        Role of oxidative stress in the progression of non-alcoholic steatosis.
        Aliment Pharmacol Ther. 2005; 22: 71-73
        • Ji C.
        • Kaplowitz N.
        ER stress: Can the liver cope?.
        J Hepatol. 2006; 45: 321-333
        • Puri P.
        • Mirshahi F.
        • Cheung O.
        • Natarajan R.
        • Maher J.W.
        • Kellum J.M.
        • et al.
        Activation and dysregulation of the unfolded protein response in nonalcoholic fatty liver disease.
        Gastroenterology. 2008; 134: 568-576
        • Hanada S.
        • Harada M.
        • Kumemura H.
        • Omary M.B.
        • Kawaguchi T.
        • Taniguchi E.
        • et al.
        Keratin-containing inclusions affect cell morphology and distribution of cytosolic cellular components.
        Exp Cell Res. 2005; 304: 471-482
        • Zatloukal K.
        • Stumptner C.
        • Fuchsbichler A.
        • Fickert P.
        • Lackner C.
        • Trauner M.
        • et al.
        The keratin cytoskeleton in liver diseases.
        J Pathol. 2004; 204: 367-376
        • Chalasani N.
        • Wilson L.
        • Kleiner D.E.
        • Cummings O.W.
        • Brunt E.M.
        • et al.
        Relationship of steatosis grade and zonal location to histological features of steatohepatitis in adult patients with non-alcoholic fatty liver disease.
        J Hepatol. 2008; 48: 829-834
        • Fowler S.D.
        • Greenspan P.
        Application of Nile red, a fluorescent hydrophobic probe, for the detection of neutral lipid deposits in tissue sections: comparison with Oil red O.
        J Histochem Cytochem. 1985; 33: 833-836
        • Debois D.
        • Bralet M.-P.
        • Le Naour F.
        • Brunelle A.
        • Laprevote O.
        In situ lipidomic analysis of nonalcoholic fatty liver by cluster TOF-SIMS imaging.
        Anal Chem. 2009; 81: 2823-2831
        • Cheng J.
        • Fujita A.
        • Ohsaki Y.
        • Suzuki M.
        • Shinohara Y.
        • Fujimoto T.
        Quantitative electron microscopy shows uniform incorporation of triglycerides into existing lipid droplets.
        Histochem Cell Biol. 2009; 132: 281-291
        • Singh R.
        • Kaushik S.
        • Wang Y.
        • Xiang Y.
        • Novak I.
        • Komatsu M.
        • et al.
        Autophagy regulates lipid metabolism.
        Nature. 2009; 458: 1131-1135