Advertisement

Toxic lipids stored by Kupffer cells correlates with their pro-inflammatory phenotype at an early stage of steatohepatitis

Published:March 15, 2012DOI:https://doi.org/10.1016/j.jhep.2012.02.028

      Background & Aims

      Non-alcoholic steatohepatitis (NASH) is characterized by steatosis associated with liver inflammation. Steatosis causes recruitment of lymphocytes into the liver and this is worsened by lipopolysaccharides (LPS). As macrophages may be involved in the lymphocyte homing, we studied the role of lipids in determining the phenotype of Kupffer cells (KCs) at the stage of steatosis.

      Methods

      Steatosis was induced in mice by a high fat diet. The turnover and the recruitment of KCs were analyzed in vivo by flow cytometry. KCs phenotype was assessed by optical and electron microscopy, cell culture and lymphocyte recruitment by in vitro chemotaxis. Lipidomic analysis was carried out by mass-spectrometry and gene expression analysis by TaqMan low density array.

      Results

      Although the number of KCs was not modified in steatotic livers compared to normal livers, their phenotypes were different. Electron microscopy demonstrated that the KCs from fatty livers were enlarged and loaded with lipid droplets. Lipid synthesis and trafficking were dysregulated in fat-laden KCs and toxic lipids accumulated. Fat-laden KCs recruited more CD4+ T and B lymphocytes in response to LPS stimulation than did control KCs and produced high levels of pro-inflammatory cytokines/chemokines, which could be reversed by inhibition of lipogenesis.

      Conclusions

      Lipid accumulation in fat-laden KCs is due to a dysregulation of lipid metabolism and trafficking. Fat-laden KCs are “primed” to recruit lymphocytes and exhibit a pro-inflammatory phenotype, which is reversible with inhibition of lipogenesis.

      Abbreviations:

      NASH (non-alcoholic steatohepatitis), LPS (lipopolysaccharide), KC (Kupffer cell), NAFLD (non-alcoholic fatty liver disease), TNFα (tumor necrosis factor-α), IFNγ (interferon-γ), IL (interkeukin), ND (normal diet), HFD (high fat diet), TG (triacylglycerol), NPC (non-parenchymateous cells), TOFA (5-(tetradecyloxy)-2-furoic acid), TLDA (TaqMan low density array), OGTT (oral glucose tolerance test), HOMA (homeostasis model assessment of insulin-resistance), ALT (alanine aminotransferase), CCL (C-C motif chemokine ligand), ATM (adipose tissue macrophages), FA (fatty acid), FAS (fatty acid synthase), ACC1 (acetyl-CoA carboxylase 1), ChREBP (carbohydrate-responsive element binding protein), PPAR (peroxisome proliferator-activated receptor), FABP (fatty acid-binding protein), FATP5 (fatty acid transport protein 5), DGAT (diacylglycerol acyltransferase), SCD1 (stearoyl-CoA desaturase 1), CPT1A (carnitine parmitoyltransferase 1A), HMG-CoA (β-hydroxy-β-methylglutaryl coenzyme A), ACAT1 (acyl-CoA cholesterol acyltransferase 1), CE (cholesterol esters), ABCA6 (ATP binding cassette transporter A6), MARCO (macrophage receptor with collagenous structure), LDL (low-density lipoprotein), TLR (toll like receptors), MTP (microsomal triglyceride transfer protein), VLDL (very low-density lipoprotein), LXRα (liver X receptors alpha), MSR1 (SR-AI) (macrophage scavenger receptor), FC (free cholesterol), DAG (diacylglycerol), CXCL10 (C-X-C motif chemokine 10), SREBP1c (sterol regulatory element binding proteins isoform 1c), SR-PSOX (scavenger receptor binding phosphatidylserine and oxidized lipoprotein)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Hepatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Angulo P.
        Nonalcoholic fatty liver disease.
        N Engl J Med. 2002; 346: 1221-1231
        • Matteoni C.A.
        • Younossi Z.M.
        • Gramlich T.
        • Boparai N.
        • Liu Y.C.
        • McCullough A.J.
        NAFLD: a spectrum of clinical and pathological severity.
        Gastroenterology. 1999; 116: 1413-1419
        • Perlemuter G.
        • Bigorgne A.
        • Cassard-Doulcier A.M.
        • Naveau S.
        NAFLD: from pathogenesis to patient care.
        Nat Clin Pract Endocrinol Metab. 2007; 3: 458-469
        • Bugianesi E.
        • Marzocchi R.
        • Villanova N.
        • Marchesini G.
        NAFLD/NASH: treatment.
        Best Pract Res Clin Gastroenterol. 2004; 18: 1105-1116
        • Guebre-Xabier M.
        • Yang S.
        • Lin H.Z.
        • Schwenk R.
        • Krzych U.
        • Diehl A.M.
        Altered hepatic lymphocyte subpopulations in obesity-related murine fatty livers: potential mechanism for sensitization to liver damage.
        Hepatology. 2000; 31: 633-640
        • Elinav E.
        • Pappo O.
        • Sklair-Levy M.
        • Margalit M.
        • Shibolet O.
        • Gomori M.
        • et al.
        Adoptive transfer of regulatory NKT lymphocytes ameliorates non-alcoholic steatohepatitis and glucose intolerance in ob/ob mice and is associated with intrahepatic CD8 trapping.
        J Pathol. 2006; 209: 121-128
        • Ma X.
        • Hua J.
        • Mohamood A.R.
        • Hamad A.R.
        • Ravi R.
        • Li Z.
        A high-fat diet and regulatory T cells influence susceptibility to endotoxin-induced liver injury.
        Hepatology. 2007; 46: 1519-1529
        • Bigorgne A.E.
        • Bouchet-Delbos L.
        • Naveau S.
        • Dagher I.
        • Prevot S.
        • Durand-Gasselin I.
        • et al.
        Obesity-induced lymphocyte hyperresponsiveness to chemokines: a new mechanism of Fatty liver inflammation in obese mice.
        Gastroenterology. 2008; 134: 1459-1469
        • Crespo J.
        • Cayon A.
        • Fernandez-Gil P.
        • Hernandez-Guerra M.
        • Mayorga M.
        • Dominguez-Diez A.
        • et al.
        Gene expression of TNF alpha and TNF-receptors, p55 and p75, in nonalcoholic steatohepatitis patients.
        Hepatology. 2001; 34: 1158-11 63
        • You Q.
        • Cheng L.
        • Kedl R.M.
        • Ju C.
        Mechanism of T cell tolerance induction by murine hepatic Kupffer cells.
        Hepatology. 2008; 48: 978-990
        • Mantovani A.
        • Sica A.
        • Sozzani S.
        • Allavena P.
        • Vecchi A.
        • Locati M.
        The chemokine system in diverse forms of macrophage activation and polarization.
        Trends Immunol. 2004; 25: 677-686
        • Ecker J.
        • Liebisch G.
        • Englmaier M.
        • Grandl M.
        • Robenek H.
        • Schmitz G.
        Induction of fatty acid synthesis is a key requirement for phagocytic differentiation of human monocytes.
        Proc Natl Acad Sci U S A. 2010; 107: 7817-7822
        • Besteiro S.
        • Bertrand-Michel J.
        • Lebrun M.
        • Vial H.
        • Dubremetz J.F.
        Lipidomic analysis of Toxoplasma gondii tachyzoites rhoptries: further insights into the role of cholesterol.
        Biochem J. 2008; 415: 87-96
        • Lumeng C.N.
        • Deyoung S.M.
        • Bodzin J.L.
        • Saltiel A.R.
        Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity.
        Diabetes. 2007; 56: 16-23
        • Ye D.
        • Hoekstra M.
        • Out R.
        • Meurs I.
        • Kruijt J.K.
        • Hildebrand R.B.
        • et al.
        Hepatic cell-specific ABC transporter profiling identifies putative novel candidates for lipid homeostasis in mice.
        Atherosclerosis. 2008; 196: 650-658
        • Mencin A.
        • Kluwe J.
        • Schwabe R.F.
        TLRs as targets in chronic liver diseases.
        Gut. 2009; 58: 704-720
        • Miura K.
        • Kodama Y.
        • Inokuchi S.
        • Schnabl B.
        • Aoyama T.
        • Ohnishi H.
        • et al.
        TLR9 promotes steatohepatitis by induction of interleukin-1beta in mice.
        Gastroenterology. 2010; 139 (e7): 323-334
        • Prieur X.
        • Roszer T.
        • Ricote M.
        Lipotoxicity in macrophages: evidence from diseases associated with the metabolic syndrome.
        Biochim Biophys Acta. 2011; 1801: 327-337
        • Schenk S.
        • Saberi M.
        • Olefsky J.M.
        Insulin sensitivity: modulation by nutrients and inflammation.
        J Clin Invest. 2008; 118: 2992-3002
        • Yamaguchi K.
        • Yang L.
        • McCall S.
        • Huang J.
        • Yu X.X.
        • Pandey S.K.
        • et al.
        Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with NASH.
        Hepatology. 2007; 45: 1366-1374
        • Holland W.L.
        • Summers S.A.
        Sphingolipids, insulin resistance, and metabolic disease: new insights from in vivo manipulation of sphingolipid metabolism.
        Endocr Rev. 2008; 29: 381-402
        • Nenseter M.S.
        • Gudmundsen O.
        • Roos N.
        • Maelandsmo G.
        • Drevon C.A.
        • Berg T.
        Role of liver endothelial and Kupffer cells in clearing low density lipoprotein from blood in hypercholesterolemic rabbits.
        J Lipid Res. 1992; 33: 867-877
        • Otogawa K.
        • Kinoshita K.
        • Fujii H.
        • Sakabe M.
        • Shiga R.
        • Nakatani K.
        • et al.
        Erythrophagocytosis by liver macrophages (Kupffer cells) promotes oxidative stress, inflammation, and fibrosis in a rabbit model of steatohepatitis.
        Am J Pathol. 2007; 170: 967-980
        • Wouters K.
        • van Gorp P.J.
        • Bieghs V.
        • Gijbels M.J.
        • Duimel H.
        • Lutjohann D.
        • et al.
        Dietary cholesterol, rather than liver steatosis, leads to hepatic inflammation in hyperlipidemic mouse models of NASH.
        Hepatology. 2008; 48: 474-486
        • Kremer M.
        • Thomas E.
        • Milton R.J.
        • Perry A.W.
        • van Rooijen N.
        • Wheeler M.D.
        • et al.
        Kupffer cell and interleukin-12-dependent loss of NKT cells in hepatosteatosis.
        Hepatology. 2010; 51: 130-141
        • Gordon S.
        • Taylor P.R.
        Monocyte and macrophage heterogeneity.
        Nat Rev Immunol. 2005; 5: 953-964
        • Mosser D.M.
        • Edwards J.P.
        Exploring the full spectrum of macrophage activation.
        Nat Rev Immunol. 2008; 8: 958-969
        • Schneider J.G.
        • Yang Z.
        • Chakravarthy M.V.
        • Lodhi I.J.
        • Wei X.
        • Turk J.
        • et al.
        Macrophage fatty-acid synthase deficiency decreases diet-induced atherosclerosis.
        J Biol Chem. 2010; 285: 23398-23409
        • Koliwad S.K.
        • Streeper R.S.
        • Monetti M.
        • Cornelissen I.
        • Chan L.
        • Terayama K.
        • et al.
        DGAT1-dependent triacylglycerol storage by macrophages protects mice from diet-induced insulin resistance and inflammation.
        J Clin Invest. 2010; 120: 756-767
        • Yang S.Q.
        • Lin H.Z.
        • Lane M.D.
        • Clemens M.
        • Diehl A.M.
        Obesity increases sensitivity to endotoxin liver injury: implications for the pathogenesis of steatohepatitis.
        Proc Natl Acad Sci U S A. 1997; 94: 2557-2562
        • Rader D.J.
        • Pure E.
        Lipoproteins, macrophage function, and atherosclerosis: beyond the foam cell?.
        Cell Metab. 2005; 1: 223-230
        • Marcel Y.L.
        • Ouimet M.
        • Wang M.D.
        Regulation of cholesterol efflux from macrophages.
        Curr Opin Lipidol. 2008; 19: 455-461
        • Yetukuri L.
        • Katajamaa M.
        • Medina-Gomez G.
        • Seppanen-Laakso T.
        • Vidal-Puig A.
        • Oresic M.
        Bioinformatics strategies for lipidomics analysis: characterization of obesity related hepatic steatosis.
        BMC Syst Biol. 2007; 1: 12
        • Bendelac A.
        • Savage P.B.
        • Teyton L.
        The biology of NKT cells.
        Annu Rev Immunol. 2007; 25: 297-336
        • Li Z.
        • Soloski M.J.
        • Diehl A.M.
        Dietary factors alter hepatic innate immune system in mice with NAFLD.
        Hepatology. 2005; 42: 880-885
        • Barral P.
        • Polzella P.
        • Bruckbauer A.
        • van Rooijen N.
        • Besra G.S.
        • Cerundolo V.
        • et al.
        CD169(+) macrophages present lipid antigens to mediate early activation of iNKT cells in lymph nodes.
        Nat Immunol. 2010; 11: 303-312
        • Odegaard J.I.
        • Ricardo-Gonzalez R.R.
        • Red Eagle A.
        • Vats D.
        • Morel C.R.
        • Goforth M.H.
        • et al.
        Alternative M2 activation of Kupffer cells by PPARdelta ameliorates obesity-induced insulin resistance.
        Cell Metab. 2008; 7: 496-507