Advertisement
Research Article| Volume 63, ISSUE 2, P408-419, August 2015

MicroRNA-221 governs tumor suppressor HDAC6 to potentiate malignant progression of liver cancer

  • Author Footnotes
    † These authors contributed equally to this work.
    Hyun Jin Bae
    Footnotes
    † These authors contributed equally to this work.
    Affiliations
    Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea

    Functional RNomics Research Center, The Catholic University of Korea, Seoul 137-701, Republic of Korea
    Search for articles by this author
  • Author Footnotes
    † These authors contributed equally to this work.
    Kwang Hwa Jung
    Footnotes
    † These authors contributed equally to this work.
    Affiliations
    Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea

    Functional RNomics Research Center, The Catholic University of Korea, Seoul 137-701, Republic of Korea
    Search for articles by this author
  • Jung Woo Eun
    Affiliations
    Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea

    Functional RNomics Research Center, The Catholic University of Korea, Seoul 137-701, Republic of Korea
    Search for articles by this author
  • Qingyu Shen
    Affiliations
    Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea

    Functional RNomics Research Center, The Catholic University of Korea, Seoul 137-701, Republic of Korea
    Search for articles by this author
  • Hyung Seok Kim
    Affiliations
    Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea

    Functional RNomics Research Center, The Catholic University of Korea, Seoul 137-701, Republic of Korea
    Search for articles by this author
  • Se Jin Park
    Affiliations
    Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea

    Functional RNomics Research Center, The Catholic University of Korea, Seoul 137-701, Republic of Korea
    Search for articles by this author
  • Woo Chan Shin
    Affiliations
    Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea

    Functional RNomics Research Center, The Catholic University of Korea, Seoul 137-701, Republic of Korea
    Search for articles by this author
  • Hee Doo Yang
    Affiliations
    Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea

    Functional RNomics Research Center, The Catholic University of Korea, Seoul 137-701, Republic of Korea
    Search for articles by this author
  • Won Sang Park
    Affiliations
    Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea

    Functional RNomics Research Center, The Catholic University of Korea, Seoul 137-701, Republic of Korea
    Search for articles by this author
  • Jung Young Lee
    Affiliations
    Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea

    Functional RNomics Research Center, The Catholic University of Korea, Seoul 137-701, Republic of Korea
    Search for articles by this author
  • Suk Woo Nam
    Correspondence
    Corresponding author. Address: Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea. Tel.: +82 2 2258 7314; fax: +82 2 537 6586.
    Affiliations
    Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea

    Functional RNomics Research Center, The Catholic University of Korea, Seoul 137-701, Republic of Korea

    Cancer Evolution Research Center, The Catholic University of Korea, Seoul 137-701, Republic of Korea
    Search for articles by this author
  • Author Footnotes
    † These authors contributed equally to this work.
Published:March 26, 2015DOI:https://doi.org/10.1016/j.jhep.2015.03.019

      Background & Aims

      Most common reason behind changes in histone deacetylase (HDAC) function is its overexpression in cancer. However, among HDACs in liver cancer, HDAC6 is uniquely endowed with a tumor suppressor, but the mechanism underlying HDAC6 inactivation has yet to be uncovered.

      Methods

      Microarray profiling and target prediction programs were used to identify miRNAs targeting HDAC6. A series of inhibitors, activators and siRNAs was introduced to validate regulatory mechanisms for microRNA-221-3p (miR-221) governing HDAC6 in hepatocarcinogenesis.

      Results

      Comprehensive miRNA profiling analysis identified seven putative endogenous miRNAs that are significantly upregulated in hepatocellular carcinoma (HCC). While miR-221 was identified as a suppressor of HDAC6 by ectopic expression of miRNA mimics in Dicer knockdown cells, targeted-disruption of miR-221 repressed cancer cell growth through derepressing HDAC6 expression. Suppression of HDAC6 via miR-221 was induced by JNK/c-Jun signaling in liver cancer cells but not in normal hepatic cells. Additionally, cytokine-induced NF-κBp65 independently regulated miR-221, thereby suppressing HDAC6 expression in HCC cells. HCC tissues derived from chemical-induced rat and H-ras12V transgenic mice liver cancer models validated that JNK/c-Jun activation and NF-κBp65 nuclear translocation are essential for the transcription of miR-221 leading to repression of HDAC6 in HCC.

      Conclusions

      Our findings suggest that the functional loss or suppression of the tumor suppressor HDAC6 is caused by induction of miR-221 through coordinated JNK/c-Jun- and NF-κB-signaling pathways during liver tumorigenesis, providing a novel target for the molecular treatment of liver malignancies.

      Graphical abstract

      Abbreviations:

      HCC (hepatocellular carcinoma), HDAC6 (histone deacetylases 6), miRNA (microRNA), 5-aza (5-aza-2′-deoxycytidine), TSA (trichostatin A), GAPDH (glyceraldehyde-3-phosphate dehydrogenase), MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), UTR (untranslated region), ChIP (Chromatin Immunoprecipitation), HGF (hepatocyte growth factor), qRT-PCR (quantitative real-time polymerase chain reaction)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Hepatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Jemal A.
        • Bray F.
        • Center M.M.
        • Ferlay J.
        Ward E and Forman D Global cancer statistics.
        CA Cancer J Clin. 2011; 61: 69-90
        • Whittaker S.
        • Marais R.
        • Zhu A.X.
        The role of signaling pathways in the development and treatment of hepatocellular carcinoma.
        Oncogene. 2010; 29: 4989-5005
        • Yang X.J.
        • Seto E.
        The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men.
        Nat Rev Mol Cell Biol. 2008; 9: 206-218
        • Peserico A.
        • Simone C.
        Physical and functional HAT/HDAC interplay regulates protein acetylation balance.
        J Biomed Biotechnol. 2011; 2011: 371832
        • Thiagalingam S.
        • Cheng K.H.
        • Lee H.J.
        • Mineva N.
        • Thiagalingam A.
        • Ponte J.F.
        Histone deacetylases: unique players in shaping the epigenetic histone code.
        Ann N Y Acad Sci. 2003; 983: 84-100
        • Jung K.H.
        • Noh J.H.
        • Kim J.K.
        • Eun J.W.
        • Bae H.J.
        • Chang Y.G.
        • et al.
        Histone deacetylase 6 functions as a tumor suppressor by activating c-Jun NH2-terminal kinase-mediated beclin 1-dependent autophagic cell death in liver cancer.
        Hepatology. 2012; 56: 644-657
        • Kim J.K.
        • Noh J.H.
        • Eun J.W.
        • Jung K.H.
        • Bae H.J.
        • Shen Q.
        • et al.
        Targeted inactivation of HDAC2 restores p16INK4a activity and exerts antitumor effects on human gastric cancer.
        Mol Cancer Res. 2013; 11: 62-73
        • Kim J.K.
        • Noh J.H.
        • Jung K.H.
        • Eun J.W.
        • Bae H.J.
        • Kim M.G.
        • et al.
        Sirtuin7 oncogenic potential in human hepatocellular carcinoma and its regulation by the tumor suppressors MiR-125a-5p and MiR-125b.
        Hepatology. 2013; 57: 1055-1067
        • Lee J.Y.
        • Koga H.
        • Kawaguchi Y.
        • Tang W.
        • Wong E.
        • Gao Y.S.
        • et al.
        HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy.
        EMBO J. 2010; 29: 969-980
        • Hubbert C.
        • Guardiola A.
        • Shao R.
        • Kawaguchi Y.
        • Ito A.
        • Nixon A.
        • et al.
        HDAC6 is a microtubule-associated deacetylase.
        Nature. 2002; 417: 455-458
        • Lee Y.S.
        • Lim K.H.
        • Guo X.
        • Kawaguchi Y.
        • Gao Y.
        • Barrientos T.
        • et al.
        The cytoplasmic deacetylase HDAC6 is required for efficient oncogenic tumorigenesis.
        Cancer Res. 2008; 68: 7561-7569
        • Saji S.
        • Kawakami M.
        • Hayashi S.
        • Yoshida N.
        • Hirose M.
        • Horiguchi S.
        • et al.
        Significance of HDAC6 regulation via estrogen signaling for cell motility and prognosis in estrogen receptor-positive breast cancer.
        Oncogene. 2005; 24: 4531-4539
        • MicroRNAs Bartel D.P.
        Genomics, biogenesis, mechanism, and function.
        Cell. 2004; 116: 281-297
        • Esquela-Kerscher A.
        • Slack F.J.
        Oncomirs – microRNAs with a role in cancer.
        Nat Rev Cancer. 2006; 6: 259-269
        • Meng F.
        • Henson R.
        • Wehbe-Janek H.
        • Ghoshal K.
        Jacob ST and Patel T MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer.
        Gastroenterology. 2007; 133: 647-658
        • Xiong Y.
        • Fang J.H.
        • Yun J.P.
        • Yang J.
        • Zhang Y.
        • Jia W.H.
        • et al.
        Effects of microRNA-29 on apoptosis, tumorigenicity, and prognosis of hepatocellular carcinoma.
        Hepatology. 2010; 51: 836-845
        • Pineau P.
        • Volinia S.
        • McJunkin K.
        • Marchio A.
        • Battiston C.
        • Terris B.
        • et al.
        miR-221 overexpression contributes to liver tumorigenesis.
        Proc Natl Acad Sci USA. 2010; 107: 264-269
        • Henrici A.
        • Montalbano R.
        • Neureiter D.
        • Krause M.
        • Stiewe T.
        • Slater E.P.
        • et al.
        The pan-deacetylase inhibitor panobinostat suppresses the expression of oncogenic miRNAs in hepatocellular carcinoma cell lines.
        Mol Carcinog. 2013; https://doi.org/10.1002/mc.22122
        • Di Fazio P.
        • Montalbano R.
        • Neureiter D.
        • Alinger B.
        • Schmidt A.
        • Merkel A.L.
        • et al.
        Downregulation of HMGA2 by the pan-deacetylase inhibitor panobinostat is dependent on hsa-let-7b expression in liver cancer cell lines.
        Exp Cell Res. 2012; 318: 1832-1843
        • Yuan Q.
        • Loya K.
        • Rani B.
        • Mobus S.
        • Balakrishnan A.
        • Lamle J.
        • et al.
        MicroRNA-221 overexpression accelerates hepatocyte proliferation during liver regeneration.
        Hepatology. 2013; 57: 299-310
        • Garofalo M.
        • Di Leva G.
        • Romano G.
        • Nuovo G.
        • Suh S.S.
        • Ngankeu A.
        • et al.
        miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation.
        Cancer Cell. 2009; 16: 498-509
        • Galardi S.
        • Mercatelli N.
        • Farace M.G.
        • Ciafre S.A.
        NF-kB and c-Jun induce the expression of the oncogenic miR-221 and miR-222 in prostate carcinoma and glioblastoma cells.
        Nucleic Acids Res. 2011; 39: 3892-3902
        • Zhang S.Z.
        • Pan F.Y.
        • Xu J.F.
        • Yuan J.
        • Guo S.Y.
        • Dai G.
        • et al.
        Knockdown of c-Met by adenovirus-delivered small interfering RNA inhibits hepatocellular carcinoma growth in vitro and in vivo.
        Mol Cancer Ther. 2005; 4: 1577-1584
        • Li J.
        • Lau G.
        • Chen L.
        • Yuan Y.F.
        • Huang J.
        • Luk J.M.
        • et al.
        Interleukin 23 promotes hepatocellular carcinoma metastasis via NF-kappa B induced matrix metalloproteinase 9 expression.
        PLoS One. 2012; 7: e46264
        • Shan B.
        • Yao T.P.
        • Nguyen H.T.
        • Zhuo Y.
        • Levy D.R.
        • Klingsberg R.C.
        • et al.
        Requirement of HDAC6 for transforming growth factor-beta1-induced epithelial-mesenchymal transition.
        J Biol Chem. 2008; 283: 21065-21073
        • Ding G.
        • Liu H.D.
        • Huang Q.
        • Liang H.X.
        • Ding Z.H.
        • Liao Z.J.
        • et al.
        HDAC6 promotes hepatocellular carcinoma progression by inhibiting P53 transcriptional activity.
        FEBS Lett. 2013; 587: 880-886
        • Kanno K.
        • Kanno S.
        • Nitta H.
        • Uesugi N.
        • Sugai T.
        • Masuda T.
        • et al.
        Overexpression of histone deacetylase 6 contributes to accelerated migration and invasion activity of hepatocellular carcinoma cells.
        Oncol Rep. 2012; 28: 867-873
        • Simon D.
        • Laloo B.
        • Barillot M.
        • Barnetche T.
        • Blanchard C.
        • Rooryck C.
        • et al.
        A mutation in the 3′-UTR of the HDAC6 gene abolishing the post-transcriptional regulation mediated by hsa-miR-433 is linked to a new form of dominant X-linked chondrodysplasia.
        Hum Mol Genet. 2010; 19: 2015-2027
        • Huang S.
        • Wang S.
        • Bian C.
        • Yang Z.
        • Zhou H.
        • Zeng Y.
        • et al.
        Upregulation of miR-22 promotes osteogenic differentiation and inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells by repressing HDAC6 protein expression.
        Stem Cells Dev. 2012; 21: 2531-2540
        • Guertin D.A.
        • Sabatini D.M.
        Defining the role of mTOR in cancer.
        Cancer Cell. 2007; 12: 9-22
        • Galardi S.
        • Mercatelli N.
        • Giorda E.
        • Massalini S.
        • Frajese G.V.
        • Ciafre S.A.
        • et al.
        miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1.
        J Biol Chem. 2007; 282: 23716-23724
        • Ciafre S.A.
        • Galardi S.
        • Mangiola A.
        • Ferracin M.
        • Liu C.G.
        • Sabatino G.
        • et al.
        Extensive modulation of a set of microRNAs in primary glioblastoma.
        Biochem Biophys Res Commun. 2005; 334: 1351-1358
        • Wang R.
        • Ferrell L.D.
        • Faouzi S.
        • Maher J.J.
        • Bishop J.M.
        Activation of the Met receptor by cell attachment induces and sustains hepatocellular carcinomas in transgenic mice.
        J Cell Biol. 2001; 153: 1023-1034
        • Horiguchi N.
        • Takayama H.
        • Toyoda M.
        • Otsuka T.
        • Fukusato T.
        • Merlino G.
        • et al.
        Hepatocyte growth factor promotes hepatocarcinogenesis through c-Met autocrine activation and enhanced angiogenesis in transgenic mice treated with diethylnitrosamine.
        Oncogene. 2002; 21: 1791-1799
        • Pikarsky E.
        • Porat R.M.
        • Stein I.
        • Abramovitch R.
        • Amit S.
        • Kasem S.
        • et al.
        NF-kappaB functions as a tumour promoter in inflammation-associated cancer.
        Nature. 2004; 431: 461-466
        • Haybaeck J.
        • Zeller N.
        • Wolf M.J.
        • Weber A.
        • Wagner U.
        • Kurrer M.O.
        • et al.
        A lymphotoxin-driven pathway to hepatocellular carcinoma.
        Cancer Cell. 2009; 16: 295-308
        • Anson M.
        • Crain-Denoyelle A.M.
        • Baud V.
        • Chereau F.
        • Gougelet A.
        • Terris B.
        • et al.
        Oncogenic beta-catenin triggers an inflammatory response that determines the aggressiveness of hepatocellular carcinoma in mice.
        J Clin Invest. 2012; 122: 586-599