Advertisement

Implications of microbiota and bile acid in liver injury and regeneration

Published:August 06, 2015DOI:https://doi.org/10.1016/j.jhep.2015.08.001

      Summary

      Studies examining the mechanisms by which the liver incurs injury and then regenerates usually focus on factors and pathways directly within the liver, neglecting the signaling derived from the gut-liver axis. The intestinal content is rich in microorganisms as well as metabolites generated from both the host and colonizing bacteria. Through the gut-liver axis, this complex “soup” exerts an immense impact on liver integrity and function. This review article summarizes data published in the past 30 years demonstrating the signaling derived from the gut-liver axis in relation to liver injury and regeneration. Due to the intricate networks of implicated pathways as well as scarcity of available mechanistic data, it seems that nutrigenomic, metabolomics, and microbiota profiling approaches are warranted to provide a better understanding regarding the interplay and impact between nutrition, bacteria, and host response in influencing liver function and healing. Therefore elucidating the possible molecular mechanisms that link microbiota alteration to host physiological response and vice versa.

      Abbreviations:

      Abcg5 (ATP-binding cassette transporters G5), BAs (bile acids), GI (gastrointestinal tract), LPS (lipopolysaccharide), PHx (partial hepatectomy), HGF (hepatocyte growth factor), NKT (natural kill T), IL (interleukin), I/R (ischemia/reperfusion), TGR5 (G protein-coupled membrane receptor), FXR (farnesoid x receptor), KO (knockout), Mdr2 (multidrug resistance 2), SHP (small heterodimer partner), FGF15 (fibroblast growth factor 15), CYP7A1 (cholesterol 7α-hydroxylase), CYP8B1 (sterol 12α-hydroxylase), TNFα (tumor necrosis factor α), CA (cholic acid), CDCA (chenodeoxycholic acid), MCA (muricholic acid), DCA (deoxycholic acid), LCA (lithocholic acid), T-β-MCA (tauro-β-muricholic acid), TCA (tauro-cholic acid), PPARγ (peroxisome proliferator-activated receptor gamma)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Hepatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Michalopoulos G.K.
        Liver-regeneration – Molecular mechanisms of growth-control.
        FASEB J. 1990; 4: 176-187
        • Michalopoulos G.K.
        Control mechanisms of liver-regeneration.
        J Gastroenterol. 1994; 29: 23-29
        • Michalopoulos G.K.
        • DeFrances M.C.
        Liver regeneration.
        Science. 1997; 276: 60-66
        • Michalopoulos G.K.
        • DeFrances M.
        Liver regeneration.
        Adv Biochem Eng Biotechnol. 2005; 93: 101-134
        • Michalopoulos G.K.
        Liver regeneration.
        J Cell Physiol. 2007; 213: 286-300
        • Michalopoulos G.K.
        Liver regeneration.
        Mol Pathol Lib. 2011; 5: 261-278
        • Michalopoulos G.K.
        Advances in liver regeneration.
        Expert Rev Gastroenterol Hepatol. 2014; 8: 897-907
        • Taub R.
        Liver regeneration: from myth to mechanism.
        Nat Rev Mol Cell Biol. 2004; 5: 836-847
        • Fausto N.
        • Campbell J.S.
        The role of hepatocytes and oval cells in liver regeneration and repopulation.
        Mech Dev. 2003; 120: 117-130
        • Fausto N.
        Liver regeneration.
        J Hepatol. 2000; 32: 19-31
        • Fausto N.
        • Campbell J.S.
        • Riehle K.J.
        Liver regeneration.
        Hepatology. 2006; 43: S45-S53
        • Fausto N.
        • Campbell J.S.
        • Riehle K.J.
        Liver regeneration.
        J Hepatol. 2012; 57: 692-694
        • Fausto N.
        New perspectives on liver-regeneration.
        Hepatology. 1986; 6: 326-327
        • Fausto N.
        Liver-regeneration – Models and mechanisms.
        Trends Adv Liver. 1992; : 1-6
        • Monga S.P.
        Role and regulation of beta-catenin signaling during physiological liver growth.
        Gene Expr. 2014; 16: 51-62
        • Monga S.P.
        Role of Wnt/beta-catenin signaling in liver metabolism and cancer.
        Int J Biochem Cell Biol. 2011; 43: 1021-1029
        • Liu H.X.
        • Fang Y.P.
        • Hu Y.
        • Gonzalez F.J.
        • Fang J.W.
        • Wan Y.J.Y.
        PPAR beta regulates liver regeneration by modulating akt and e2f signaling.
        PLoS One. 2013; 8: e65644
        • Dai G.L.
        • He L.
        • Bu P.L.
        • Wan Y.J.Y.
        Pregnane X receptor is essential for normal progression of liver regeneration.
        Hepatology. 2008; 47: 1277-1287
        • Yang X.X.
        • Guo M.L.
        • Wan Y.J.Y.
        Hepatocyte retinoid X receptor alpha (RXRalpha) deficiency impairs liver regeneration through multiple pathways.
        FASEB J. 2009; 23
        • Liu H.X.
        • Ly I.
        • Hu Y.
        • Wan Y.J.Y.
        Retinoic acid regulates cell cycle genes and accelerates normal mouse liver regeneration.
        Biochem Pharmacol. 2014; 91: 256-265
        • Zhang L.S.
        • Wang Y.D.
        • Chen W.D.
        • Wang X.C.
        • Lou G.Y.
        • Liu N.
        • et al.
        Promotion of liver regeneration/repair by farnesoid X receptor in both liver and intestine in mice.
        Hepatology. 2012; 56: 2336-2343
        • Hu Y.
        • Zhan Q.
        • Liu H.X.
        • Chau T.
        • Li Y.Y.
        • Wan Y.J.Y.
        Accelerated partial hepatectomy-induced liver cell proliferation is associated with liver injury in Nur77 knockout mice.
        Am J Pathol. 2014; 184: 3272-3283
        • Pean N.
        • Doignon I.
        • Garcin I.
        • Besnard A.
        • Julien B.
        • Liu B.K.
        • et al.
        The receptor TGR5 protects the liver from bile acid overload during liver regeneration in mice.
        Hepatology. 2013; 58: 1451-1460
        • Huang W.D.
        • Ma K.
        • Zhang J.
        • Qatanani M.
        • Cuvillier J.
        • Liu J.
        • et al.
        Nuclear receptor-dependent bile acid signaling is required for normal liver regeneration.
        Science. 2006; 312: 233-236
        • Gazit V.
        • Huang J.S.
        • Weymann A.
        • Rudnick D.A.
        Analysis of the role of hepatic PPAR? Expression during mouse liver regeneration.
        Hepatology. 2012; 56: 1489-1498
        • Anderson S.P.
        • Yoon L.
        • Richard E.B.
        • Duan C.S.
        • Cattley R.C.
        • Corton J.C.
        Delayed liver regeneration in peroxisome proliferator-activated receptor-alpha-null mice.
        Hepatology. 2002; 36: 544-554
        • Liu H.X.
        • Hu Y.
        • French S.W.
        • Gonzalez F.J.
        • Wan Y.J.
        Forced expression of fibroblast growth factor 21 reverses the sustained impairment of liver regeneration in hPPARalphaPAC mice due to dysregulated bile acid synthesis.
        Oncotarget. 2015; 6: 9686-9700
        • Sommer F.
        • Backhed F.
        The gut microbiota – Masters of host development and physiology.
        Nat Rev Microbiol. 2013; 11: 227-238
        • O’Hara A.M.
        • Shanahan F.
        The gut flora as a forgotten organ.
        EMBO Rep. 2006; 7: 688-693
        • Aderem A.
        • Ulevitch R.J.
        Toll-like receptors in the induction of the innate immune response.
        Nature. 2000; 406: 782-787
        • Cornell R.P.
        Gut-derived endotoxin elicits hepatotrophic factor secretion for liver-regeneration.
        Am J Physiol. 1985; 249: R551-R562
        • Cornell R.P.
        Restriction of gut-derived endotoxin impairs DNA-synthesis for liver-regeneration.
        Am J Physiol. 1985; 249: R563-R569
        • Cornell R.P.
        • Liljequist B.L.
        • Bartizal K.F.
        Depressed liver-regeneration after partial-hepatectomy of germ-free, athymic and lipopolysaccharide-resistant mice.
        Hepatology. 1990; 11: 916-922
        • Gao C.H.
        • Jokerst R.
        • Gondipalli P.
        • Cai S.R.
        • Kennedy S.
        • Flye M.W.
        • et al.
        Lipopolysaccharide potentiates the effect of hepatocyte growth factor on hepatocyte replication in rats by augmenting AP-1 activity.
        Hepatology. 1999; 30: 1405-1416
        • Arai M.
        • Mochida S.
        • Ohno A.
        • Arai S.
        • Fujiwara K.
        Selective bowel decontamination of recipients for prevention against liver injury following orthotopic liver transplantation: evaluation with rat models.
        Hepatology. 1998; 27: 123-127
        • MacIntosh E.L.
        • Gauthier T.
        • Harding G.K.
        • Minuk G.Y.
        Selective bowel decontamination does not alter hepatic regeneration in rats.
        Gastroenterology. 1992; 102: 1403-1405
        • Wu X.
        • Sun R.
        • Chen Y.
        • Zheng X.
        • Bai L.
        • Lian Z.
        • et al.
        Oral ampicillin inhibits liver regeneration by breaking hepatic innate immune tolerance normally maintained by gut commensal bacteria.
        Hepatology. 2015; 62: 253-264
        • Cuenca S.
        • Sanchez E.
        • Santiago A.
        • El Khader I.
        • Panda S.
        • Vidal S.
        • et al.
        Microbiome composition by pyrosequencing in mesenteric lymph nodes of rats with CCI4-induced cirrhosis.
        J Innate Immun. 2014; 6: 263-271
        • Rodes L.
        • Saha S.
        • Tomaro-Duchesneau C.
        • Prakash S.
        Microencapsulated Bifidobacterium longum subsp. infantis ATCC 15697 favorably modulates gut microbiota and reduces circulating endotoxins in F344 rats.
        Biomed Res Int. 2014; 2014: 602832
        • Rayes N.
        • Pilarski T.
        • Stockmann M.
        • Bengmark S.
        • Neuhaus P.
        • Seehofer D.
        Effect of pre- and probiotics on liver regeneration after resection: a randomised, double-blind pilot study.
        Benef Microbes. 2012; 3: 237-244
        • Nardone G.
        • Compare D.
        • Liguori E.
        • Di Mauro V.
        • Rocco A.
        • Barone M.
        • et al.
        Protective effects of Lactobacillus paracasei F19 in a rat model of oxidative and metabolic hepatic injury.
        Am J Physiol Gastrointest Liver Physiol. 2010; 299: G669-G676
        • Wang Y.H.
        • Kirpich I.
        • Liu Y.L.
        • Ma Z.H.
        • Barve S.
        • McClain C.J.
        • et al.
        Lactobacillus rhamnosus GG treatment potentiates intestinal hypoxia-inducible factor, promotes intestinal integrity and ameliorates alcohol-induced liver injury.
        Am J Pathol. 2011; 179: 2866-2875
        • Wang Y.H.
        • Liu Y.L.
        • Kirpich I.
        • Ma Z.H.
        • Wang C.L.
        • Zhang M.
        • et al.
        Lactobacillus rhamnosus GG reduces hepatic TNF alpha production and inflammation in chronic alcohol-induced liver injury.
        J Nutr Biochem. 2013; 24: 1609-1615
        • Hakansson A.
        • Branning C.
        • Molin G.
        • Adawi D.
        • Hagslatt M.L.
        • Jeppsson B.
        • et al.
        PLoS One. 2012; 7: e33510
        • Lv L.X.
        • Hu X.J.
        • Qian G.R.
        • Zhang H.
        • Lu H.F.
        • Zheng B.W.
        • et al.
        Administration of Lactobacillus salivarius LI01 or Pediococcus pentosaceus LI05 improves acute liver injury induced by D-galactosamine in rats.
        Appl Microbiol Biotechnol. 2014; 98: 5619-5632
        • Seehofer D.
        • Rayes N.
        • Schiller R.
        • Stockmann M.
        • Muller A.R.
        • Schirmeier A.
        • et al.
        Probiotics partly reverse increased bacterial translocation after simultaneous liver resection and colonic anastomosis in rats.
        J Surg Res. 2004; 117: 262-271
        • Xie Y.R.
        • Chen H.Z.
        • Zhu B.
        • Qin N.
        • Chen Y.B.
        • Li Z.F.
        • et al.
        Effect of intestinal microbiota alteration on hepatic damage in rats with acute rejection after liver transplantation.
        Microb Ecol. 2014; 68: 871-880
        • Kirpich I.A.
        • Solovieva N.V.
        • Leikhter S.N.
        • Shidakova N.A.
        • Lebedeva O.V.
        • Sidorov P.I.
        • et al.
        Probiotics restore bowel flora and improve liver enzymes in human alcohol-induced liver injury: a pilot study.
        Alcohol. 2008; 42: 675-682
        • Llopis M.
        • Antolin M.
        • Guarner F.
        • Salas A.
        • Malagelada J.R.
        Mucosal colonisation with Lactobacillus casei mitigates barrier injury induced by exposure to trinitronbenzene sulphonic acid.
        Gut. 2005; 54: 955-959
        • Tsuei J.
        • Chau T.
        • Mills D.
        • Wan Y.J.Y.
        Bile acid dysregulation, gut dysbiosis, and gastrointestinal cancer.
        Exp Biol Med. 2014; 239: 1489-1504
        • Li T.G.
        • Chiang J.Y.L.
        Bile acids as metabolic regulators.
        Curr Opin Gastroenterol. 2015; 31: 159-165
        • Li T.G.
        • Chiang J.Y.L.
        Bile acid signaling in metabolic disease and drug therapy.
        Pharmacol Rev. 2014; 66: 948-983
        • Fukano S.
        • Saitoh Y.
        • Uchida K.
        • Akiyoshi T.
        • Takeda K.
        Bile-acid metabolism in partially hepatectomized rats.
        Steroids. 1985; 45: 209-227
        • Csanaky I.L.
        • Aleksunes L.M.
        • Tanaka Y.
        • Klaassen C.D.
        Role of hepatic transporters in prevention of bile acid toxicity after partial hepatectomy in mice.
        Am J Physiol Gastrointest Liver Physiol. 2009; 297: G419-G433
        • Wang R.X.
        • Sheps J.A.
        • Ling V.
        ABC transporters, bile acids, and inflammatory stress in liver cancer.
        Curr Pharm Biotechnol. 2011; 12: 636-646
        • Yang F.
        • He Y.Q.
        • Liu H.X.
        • Tsuei J.
        • Jiang X.Y.
        • Yang L.
        • et al.
        All-trans retinoic acid regulates hepatic bile acid homeostasis.
        Biochem Pharmacol. 2014; 91: 483-489
        • Song K.H.
        • Ellis E.
        • Strom S.
        • Chiang J.Y.
        Hepatocyte growth factor signaling pathway inhibits cholesterol 7alpha-hydroxylase and bile acid synthesis in human hepatocytes.
        Hepatology. 2007; 46: 1993-2002
        • Hoekstra L.T.
        • Rietkerk M.
        • van Lienden K.P.
        • van den Esschert J.W.
        • Schaap F.G.
        • van Gulik T.M.
        Bile salts predict liver regeneration in rabbit model of portal vein embolization.
        J Surg Res. 2012; 178: 773-778
        • Dong X.S.
        • Zhao H.L.
        • Ma X.M.
        • Wang S.M.
        Reduction in bile acid pool causes delayed liver regeneration accompanied by down-regulated expression of FXR and c-Jun mRNA in rats.
        J Huazhong Univ Sci Technolog Med Sci. 2010; 30: 55-60
        • Naugler W.E.
        Bile acid flux is necessary for normal liver regeneration.
        PLoS One. 2014; 9: e97426
        • Medeiros A.C.
        • Azevedo A.C.B.
        • Oseas J.M.D.
        • Gomes M.D.F.
        • de Oliveira F.G.
        • Rocha K.B.F.
        • et al.
        The ileum positively regulates hepatic regeneration in rats.
        Acta Cir Bras. 2014; 29: 93-98
        • Fan M.J.
        • Wang X.C.
        • Xu G.Y.
        • Yan Q.F.
        • Huang W.D.
        Bile acid signaling and liver regeneration.
        Biochim Biophys Acta. 2015; 1849: 196-200
        • Vallim T.Q.D.
        • Tarling E.J.
        • Edwards P.A.
        Pleiotropic roles of bile acids in metabolism.
        Cell Metab. 2013; 17: 657-669
        • Uriarte I.
        • Fernandez-Barrena M.G.
        • Monte M.J.
        • Latasa M.U.
        • Chang H.C.Y.
        • Carotti S.
        • et al.
        Identification of fibroblast growth factor 15 as a novel mediator of liver regeneration and its application in the prevention of post-resection liver failure in mice.
        Gut. 2013; 62: 899-910
        • Schaap F.G.
        • Leclercq I.A.
        • Jansen P.L.M.
        • Damink S.W.O.
        Prometheus’ little helper, a novel role for fibroblast growth factor 15 in compensatory liver growth.
        J Hepatol. 2013; 59: 1121-1123
        • Kong B.
        • Huang J.S.
        • Zhu Y.
        • Li G.D.
        • Williams J.
        • Shen S.
        • et al.
        Fibroblast growth factor 15 deficiency impairs liver regeneration in mice.
        Am J Physiol Gastrointest Liver Physiol. 2014; 306: G893-G902
        • Borude P.
        • Edwards G.
        • Walesky C.
        • Li F.
        • Ma X.C.
        • Kong B.
        • et al.
        Hepatocyte-specific deletion of farnesoid x receptor delays but does not inhibit liver regeneration after partial hepatectomy in mice.
        Hepatology. 2012; 56: 2344-2352
        • Bohm F.
        • Kohler U.A.
        • Speicher T.
        • Werner S.
        Regulation of liver regeneration by growth factors and cytokines.
        EMBO Mol Med. 2010; 2: 294-305
        • Kanayama M.
        • Takahara T.
        • Yata Y.
        • Xue F.
        • Shinno E.
        • Nonome K.
        • et al.
        Hepatocyte growth factor promotes colonic epithelial regeneration via Akt signaling.
        Am J Physiol Gastrointest Liver Physiol. 2007; 293: G230-G239
        • El-Jamal N.
        • Erdual E.
        • Neunlist M.
        • Koriche D.
        • Dubuquoy C.
        • Maggiotto F.
        • et al.
        Glugacon-like peptide-2: broad receptor expression, limited therapeutic effect on intestinal inflammation and novel role in liver regeneration.
        Am J Physiol Gastrointest Liver Physiol. 2014; 307: G274-G285
        • Hofmann A.F.
        • Hagey L.R.
        • Krasowski M.D.
        Bile salts of vertebrates: structural variation and possible evolutionary significance.
        J Lipid Res. 2010; 51: 226-246
        • Chiang J.Y.L.
        Bile acid regulation of gene expression: Roles of nuclear hormone receptors.
        Endocr Rev. 2002; 23: 443-463
        • Degirolamo C.
        • Rainaldi S.
        • Bovenga F.
        • Murzilli S.
        • Moschetta A.
        Microbiota modification with probiotics induces hepatic bile acid synthesis via downregulation of the Fxr-Fgf15 axis in mice.
        Cell Rep. 2014; 7: 12-18
        • Swann J.R.
        • Want E.J.
        • Geier F.M.
        • Spagou K.
        • Wilson I.D.
        • Sidaway J.E.
        • et al.
        Systemic gut microbial modulation of bile acid metabolism in host tissue compartments.
        Proc Natl Acad Sci U S A. 2011; 108: 4523-4530
        • Yang F.
        • Hu Y.
        • Liu H.X.
        • Wan Y.J.Y.
        MiR-22-silenced cyclin A expression in colon and liver cancer cells is regulated by bile acid receptor.
        J Biol Chem. 2015; 290: 6507-6515
        • Sayin S.I.
        • Wahlstrom A.
        • Felin J.
        • Jantti S.
        • Marschall H.U.
        • Bamberg K.
        • et al.
        Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist.
        Cell Metab. 2013; 17: 225-235
        • Kakiyama G.
        • Pandak W.M.
        • Gillevet P.M.
        • Hylemon P.B.
        • Heuman D.M.
        • Daita K.
        • et al.
        Modulation of the fecal bile acid profile by gut microbiota in cirrhosis.
        J Hepatol. 2013; 58: 949-955
        • Islam S.
        • Felin J.
        • Jantti S.
        • Hyotylainen T.
        • Wahlstrom A.
        • Marschall H.U.
        • et al.
        Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-betamuricholic acid, a naturally occurring Fxr antagonist.
        J Hepatol. 2012; 56 (S556–S556)
        • Kakiyama G.
        • Hylemon P.B.
        • Zhou H.P.
        • Pandak W.M.
        • Heuman D.M.
        • Kang D.J.
        • et al.
        Colonic inflammation and secondary bile acids in alcoholic cirrhosis.
        Am J Physiol Gastrointest Liver Physiol. 2014; 306: G929-G937
        • Inagaki T.
        • Moschetta A.
        • Lee Y.K.
        • Peng L.
        • Zhao G.X.
        • Downes M.
        • et al.
        Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor.
        Proc Natl Acad Sci U S A. 2006; 103: 3920-3925
        • Ilan Y.
        Leaky gut and the liver: a role for bacterial translocation in nonalcoholic steatohepatitis.
        World J Gastroenterol. 2012; 18: 2609-2618
        • DeMeo M.T.
        • Mutlu E.A.
        • Keshavarzian A.
        • Tobin M.C.
        Intestinal permeation and gastrointestinal disease.
        J Clin Gastroenterol. 2002; 34: 385-396
        • Li F.
        • Jiang C.T.
        • Krausz K.W.
        • Li Y.F.
        • Albert I.
        • Hao H.P.
        • et al.
        Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity.
        Nat Commun. 2013; 4: 2384
        • Islam K.B.M.S.
        • Fukiya S.
        • Hagio M.
        • Fujii N.
        • Ishizuka S.
        • Ooka T.
        • et al.
        Bile acid is a host factor that regulates the composition of the cecal microbiota in rats.
        Gastroenterology. 2011; 141: 1773-1781
        • Shankar V.
        • Hamilton M.J.
        • Khoruts A.
        • Kilburn A.
        • Unno T.
        • Paliy O.
        • et al.
        Species and genus level resolution analysis of gut microbiota in Clostridium difficile patients following fecal microbiota transplantation.
        Microbiome. 2014; 2: 13
        • Pereira-Fantini P.M.
        • Lapthorne S.
        • Joyce S.A.
        • Dellios N.L.
        • Wilson G.
        • Fouhy F.
        • et al.
        Altered FXR signalling is associated with bile acid dysmetabolism in short bowel syndrome-associated liver disease.
        J Hepatol. 2014; 61: 1115-1125
        • Keshavarzian A.
        • Holmes E.W.
        • Patel M.
        • Iber F.
        • Fields J.Z.
        • Pethkar S.
        Leaky gut in alcoholic cirrhosis: a possible mechanism for alcohol-induced liver damage.
        Am J Gastroenterol. 1999; 94: 200-207
        • Su L.
        • Wang J.H.
        • Cong X.
        • Wang L.H.
        • Liu F.
        • Xie X.W.
        • et al.
        Intestinal immune barrier integrity in rats with nonalcoholic hepatic steatosis and steatohepatitis.
        Chin Med J (Engl). 2012; 125: 306-311
        • Fukata M.
        • Michelsen K.S.
        • Eri R.
        • Thomas L.S.
        • Hu B.
        • Lukasek K.
        • et al.
        Toll-like receptor-4 is required for intestinal response to epithelial injury and limiting bacterial translocation in a murine model of acute colitis.
        Am J Physiol Gastrointest Liver Physiol. 2005; 288: G1055-G1065
        • Ewaschuk J.
        • Endersby R.
        • Thiel D.
        • Diaz H.
        • Backer J.
        • Ma M.
        • et al.
        Probiotic bacteria prevent hepatic damage and maintain colonic barrier function in a mouse model of sepsis.
        Hepatology. 2007; 46: 841-850
        • Gazit V.
        • Huang J.
        • Weymann A.
        • Rudnick D.A.
        Analysis of the role of hepatic PPARgamma expression during mouse liver regeneration.
        Hepatology. 2012; 56: 1489-1498
        • Ewaschuk J.B.
        • Diaz H.
        • Meddings L.
        • Diederichs B.
        • Dmytrash A.
        • Backer J.
        • et al.
        Secreted bioactive factors from Bifidobacterium infantis enhance epithelial cell barrier function.
        Am J Physiol Gastrointest Liver Physiol. 2008; 295: G1025-G1034
        • Ito A.
        • Higashiguchi T.
        Effects of glutamine administration on liver regeneration following hepatectomy.
        Nutrition. 1999; 15: 23-28
        • Mutlu E.A.
        • Gillevet P.M.
        • Rangwala H.
        • Sikaroodi M.
        • Naqvi A.
        • Engen P.A.
        • et al.
        Colonic microbiome is altered in alcoholism.
        Am J Physiol Gastrointest Liver Physiol. 2012; 302: G966-G978
        • Tsujimoto T.
        • Kawaratani H.
        • Kitazawa T.
        • Uemura M.
        • Fukui H.
        Innate immune reactivity of the ileum-liver axis in nonalcoholic steatohepatitis.
        Dig Dis Sci. 2012; 57: 1144-1151
        • de Wit N.
        • Derrien M.
        • Bosch-Vermeulen H.
        • Oosterink E.
        • Keshtkar S.
        • Duval C.
        • et al.
        Saturated fat stimulates obesity and hepatic steatosis and affects gut microbiota composition by an enhanced overflow of dietary fat to the distal intestine.
        Am J Physiol Gastrointest Liver Physiol. 2012; 303: G589-G599
        • Spencer M.D.
        • Hamp T.J.
        • Reid R.W.
        • Fischer L.M.
        • Zeisel S.H.
        • Fodor A.A.
        Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency.
        Gastroenterology. 2011; 140: 976-986
        • Yin X.C.
        • Peng J.H.
        • Zhao L.P.
        • Yu Y.P.
        • Zhang X.
        • Liu P.
        • et al.
        Structural changes of gut microbiota in a rat non-alcoholic fatty liver disease model treated with a Chinese herbal formula.
        Syst Appl Microbiol. 2013; 36: 188-196
        • Bellavia M.
        • Rappa F.
        • Lo Bello M.
        • Brecchia G.
        • Tomasello G.
        • Leone A.
        • et al.
        Lactobacillus casei and bifidobacterium lactis supplementation reduces tissue damage of intestinal mucosa and liver after 2,4,6-trinitrobenzenesulfonic acid treatment in mice.
        J Biol Regul Homeost Agents. 2014; 28: 251-261
        • Zhang Y.Q.
        • Lee F.Y.
        • Barrera G.
        • Lee H.
        • Vales C.
        • Gonzalez F.J.
        • et al.
        Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice.
        Proc Natl Acad Sci U S A. 2006; 103: 1006-1011
        • Watanabe M.
        • Houten S.M.
        • Wang L.
        • Moschetta A.
        • Mangelsdorf D.J.
        • Heyman R.A.
        • et al.
        Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c.
        J Clin Invest. 2004; 113: 1408-1418
        • Harach T.
        • Pols T.W.H.
        • Nomura M.
        • Maida A.
        • Watanabe M.
        • Auwerx J.
        • et al.
        TGR5 potentiates GLP-1 secretion in response to anionic exchange resins.
        Sci Rep. 2012; 2: 430
        • Potthoff M.J.
        • Potts A.
        • He T.T.
        • Duarte J.A.G.
        • Taussig R.
        • Mangelsdorf D.J.
        • et al.
        Colesevelam suppresses hepatic glycogenolysis by TGR5-mediated induction of GLP-1 action in DIO mice.
        Am J Physiol Gastrointest Liver Physiol. 2013; 304: G371-G380
        • Ridlon J.M.
        • Kang D.J.
        • Hylemon P.B.
        Bile salt biotransformations by human intestinal bacteria.
        J Lipid Res. 2006; 47: 241-259
        • Jones B.V.
        • Begley M.
        • Hill C.
        • Gahan C.G.M.
        • Marchesi J.R.
        Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome.
        Proc Natl Acad Sci U S A. 2008; 105: 13580-13585
        • Lepercq P.
        • Gerard P.
        • Beguet F.
        • Raibaud P.
        • Grill J.P.
        • Relano P.
        • et al.
        Epimerization of chenodeoxycholic acid to ursodeoxycholic acid by Clostridium baratii isolated from human feces.
        FEMS Microbiol Lett. 2004; 235: 65-72