Advertisement

Epithelial-mesenchymal transition in cholangiocarcinoma: From clinical evidence to regulatory networks

Published:September 26, 2016DOI:https://doi.org/10.1016/j.jhep.2016.09.010

      Summary

      Cholangiocarcinoma (CCA) is an aggressive tumor with a poor prognosis due to its late clinical presentation and the lack of effective non-surgical therapies. Unfortunately, most of the patients are not eligible for curative surgery owing to the presence of metastases at the time of diagnosis. Therefore, it is important to understand the steps leading to cell dissemination in patients with CCA.
      To metastasize from the primary site, cancer cells must acquire migratory and invasive properties by a cell plasticity-promoting phenomenon known as epithelial-mesenchymal transition (EMT). EMT is a reversible dynamic process by which epithelial cells gradually adopt structural and functional characteristics of mesenchymal cells, and has lately become a centre of attention in the field of metastatic dissemination.
      In the present review, we aim to provide an extensive overview of the current clinical data and the prognostic value of different EMT markers that have been analysed in CCA. We summarize all the regulatory networks implicated in EMT from the membrane receptors to the main EMT-inducing transcription factors (SNAIL, TWIST and ZEB). Furthermore, since a tumor is a complex structure not exclusively formed by tumor cells, we also address the prominent role of the main cell types of the desmoplastic stroma that characterizes CCA in the regulation of EMT. Finally, we discuss the therapeutic considerations and difficulties faced to develop an effective anti-EMT treatment due to the redundancies and bypasses among the pathways regulating EMT.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Hepatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      Author names in bold designate shared co-first authorship

        • Fitzmaurice C.
        • Dicker D
        • Pain A.
        • Hamavid H.
        • Moradi-Lakeh M.
        • et al.
        • Global Burden of Disease Cancer C
        The global burden of cancer 2013.
        JAMA Oncol. 2015; 1: 505-527
        • Banales J.M.
        • Cardinale V.
        • Carpino G.
        • Marzioni M.
        • Andersen J.B.
        • Invernizzi P.
        • et al.
        Expert consensus document: Cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA).
        Nat Rev Gastroenterol Hepatol. 2016; 13: 261-280
        • Sirica A.E.
        • Gores G.J.
        Desmoplastic stroma and cholangiocarcinoma: clinical implications and therapeutic targeting.
        Hepatology. 2014; 59: 2397-2402
        • Blechacz B.
        • Komuta M.
        • Roskams T.
        • Gores G.J.
        Clinical diagnosis and staging of cholangiocarcinoma.
        Nat Rev Gastroenterol Hepatol. 2011; 8: 512-522
        • Patel T.
        Increasing incidence and mortality of primary intrahepatic cholangiocarcinoma in the United States.
        Hepatology. 2001; 33: 1353-1357
        • Pichlmayr R.
        • Weimann A.
        • Klempnauer J.
        • Oldhafer K.J.
        • Maschek H.
        • Tusch G.
        • et al.
        Surgical treatment in proximal bile duct cancer. A single-center experience.
        Ann Surg. 1996; 224: 628-638
        • Klempnauer J.
        • Ridder G.J.
        • Werner M.
        • Weimann A.
        • Pichlmayr R.
        What constitutes long-term survival after surgery for hilar cholangiocarcinoma?.
        Cancer. 1997; 79: 26-34
        • Zhu A.X.
        Future directions in the treatment of cholangiocarcinoma.
        Best Pract Res Clin Gastroenterol. 2015; 29: 355-361
        • Valle J.
        • Wasan H.
        • Palmer D.H.
        • Cunningham D.
        • Anthoney A.
        • Maraveyas A.
        • et al.
        Cisplatin plus gemcitabine vs. gemcitabine for biliary tract cancer.
        N Engl J Med. 2010; 362: 1273-1281
        • Nieto M.A.
        • Cano A.
        The epithelial-mesenchymal transition under control: global programs to regulate epithelial plasticity.
        Semin Cancer Biol. 2012; 22: 361-368
        • Guarino M.
        • Rubino B.
        • Ballabio G.
        The role of epithelial-mesenchymal transition in cancer pathology.
        Pathology. 2007; 39: 305-318
        • De Wever O.
        • Pauwels P.
        • De Craene B.
        • Sabbah M.
        • Emami S.
        • Redeuilh G.
        • et al.
        Molecular and pathological signatures of epithelial-mesenchymal transitions at the cancer invasion front.
        Histochem Cell Biol. 2008; 130: 481-494
        • Thiery J.P.
        • Acloque H.
        • Huang R.Y.
        • Nieto M.A.
        Epithelial-mesenchymal transitions in development and disease.
        Cell. 2009; 139: 871-890
        • Lamouille S.
        • Subramanyam D.
        • Blelloch R.
        • Derynck R.
        Regulation of epithelial-mesenchymal and mesenchymal-epithelial transitions by microRNAs.
        Curr Opin Cell Biol. 2013; 25: 200-207
        • Puisieux A.
        • Brabletz T.
        • Caramel J.
        Oncogenic roles of EMT-inducing transcription factors.
        Nat Cell Biol. 2014; 16: 488-494
        • Moyret-Lalle C.
        • Ruiz E.
        • Puisieux A.
        Epithelial-mesenchymal transition transcription factors and miRNAs: “Plastic surgeons” of breast cancer.
        World J Clin Oncol. 2014; 5: 311-322
        • Gumbiner B.M.
        Regulation of cadherin-mediated adhesion in morphogenesis.
        Nat Rev Mol Cell Biol. 2005; 6: 622-634
        • Araki K.
        • Shimura T.
        • Suzuki H.
        • Tsutsumi S.
        • Wada W.
        • Yajima T.
        • et al.
        E/N-cadherin switch mediates cancer progression via TGF-beta-induced epithelial-to-mesenchymal transition in extrahepatic cholangiocarcinoma.
        Br J Cancer. 2011; 105: 1885-1893
        • Li Q.
        • Wang J.M.
        • Liu C.
        • Xiao B.L.
        • Lu J.X.
        • Zou S.Q.
        Correlation of aPKC-iota and E-cadherin expression with invasion and prognosis of cholangiocarcinoma.
        Hepatobiliary Pancreat Dis Int. 2008; 7: 70-75
        • Ashida K.
        • Terada T.
        • Kitamura Y.
        • Kaibara N.
        Expression of E-cadherin, alpha-catenin, beta-catenin, and CD44 (standard and variant isoforms) in human cholangiocarcinoma: an immunohistochemical study.
        Hepatology. 1998; 27: 974-982
        • Settakorn J.
        • Kaewpila N.
        • Burns G.F.
        • Leong A.S.
        FAT, E-cadherin, beta catenin, HER 2/neu, Ki67 immuno-expression, and histological grade in intrahepatic cholangiocarcinoma.
        J Clin Pathol. 2005; 58: 1249-1254
        • Farazi P.A.
        • Zeisberg M.
        • Glickman J.
        • Zhang Y.
        • Kalluri R.
        • DePinho R.A.
        Chronic bile duct injury associated with fibrotic matrix microenvironment provokes cholangiocarcinoma in p53-deficient mice.
        Cancer Res. 2006; 66: 6622-6627
        • Nemeth Z.
        • Szasz A.M.
        • Somoracz A.
        • Tatrai P.
        • Nemeth J.
        • Gyorffy H.
        • et al.
        Zonula occludens-1, occludin, and E-cadherin protein expression in biliary tract cancers.
        Pathol Oncol Res. 2009; 15: 533-539
        • Ryu H.S.
        • Chung J.H.
        • Lee K.
        • Shin E.
        • Jing J.
        • Choe G.
        • et al.
        Overexpression of epithelial-mesenchymal transition-related markers according to cell dedifferentiation: clinical implications as an independent predictor of poor prognosis in cholangiocarcinoma.
        Hum Pathol. 2012; 43: 2360-2370
        • Yao X.
        • Wang X.
        • Wang Z.
        • Dai L.
        • Zhang G.
        • Yan Q.
        • et al.
        Clinicopathological and prognostic significance of epithelial mesenchymal transition-related protein expression in intrahepatic cholangiocarcinoma.
        Onco Targets Ther. 2012; 5: 255-261
        • Gu M.J.
        • Choi J.H.
        Clinicopathological significance of E-cadherin, beta-catenin and epidermal growth factor receptor expression in intrahepatic cholangiocarcinoma.
        Hepatogastroenterology. 2012; 59: 1241-1244
        • Mao X.
        • Chen D.
        • Wu J.
        • Li J.
        • Zhou H.
        • Wu Y.
        • et al.
        Differential expression of fascin, E-cadherin and vimentin: Proteins associated with survival of cholangiocarcinoma patients.
        Am J Med Sci. 2013; 346: 261-268
        • Techasen A.
        • Loilome W.
        • Namwat N.
        • Khuntikeo N.
        • Puapairoj A.
        • Jearanaikoon P.
        • et al.
        Loss of E-cadherin promotes migration and invasion of cholangiocarcinoma cells and serves as a potential marker of metastasis.
        Tumour Biol. 2014; 35: 8645-8652
        • Claperon A.
        • Mergey M.
        • Nguyen Ho-Bouldoires T.H.
        • Vignjevic D.
        • Wendum D.
        • Chretien Y.
        • et al.
        EGF/EGFR axis contributes to the progression of cholangiocarcinoma through the induction of an epithelial-mesenchymal transition.
        J Hepatol. 2014; 61: 325-332
        • Endo K.
        • Ashida K.
        • Miyake N.
        • Terada T.
        E-cadherin gene mutations in human intrahepatic cholangiocarcinoma.
        J Pathol. 2001; 193: 310-317
        • Gu M.J.
        • Choi J.H.
        Epithelial-mesenchymal transition phenotypes are associated with patient survival in intrahepatic cholangiocarcinoma.
        J Clin Pathol. 2014; 67: 229-234
        • Huang X.Y.
        • Zhang C.
        • Cai J.B.
        • Shi G.M.
        • Ke A.W.
        • Dong Z.R.
        • et al.
        Comprehensive multiple molecular profile of epithelial mesenchymal transition in intrahepatic cholangiocarcinoma patients.
        PLoS One. 2014; 9e96860
        • Lee S.
        • Kim W.H.
        • Jung H.Y.
        • Yang M.H.
        • Kang G.H.
        Aberrant CpG island methylation of multiple genes in intrahepatic cholangiocarcinoma.
        Am J Pathol. 2002; 161: 1015-1022
        • Mosnier J.F.
        • Kandel C.
        • Cazals-Hatem D.
        • Bou-Hanna C.
        • Gournay J.
        • Jarry A.
        • et al.
        N-cadherin serves as diagnostic biomarker in intrahepatic and perihilar cholangiocarcinomas.
        Modern Pathol. 2009; 22: 182-190
        • Terashita K.
        • Chuma M.
        • Hatanaka Y.
        • Hatanaka K.
        • Mitsuhashi T.
        • Yokoo H.
        • et al.
        ZEB1 expression is associated with prognosis of intrahepatic cholangiocarcinoma.
        J Clin Pathol. 2016; 69: 593-599
        • Zhai B.
        • Yan H.X.
        • Liu S.Q.
        • Chen L.
        • Wu M.C.
        • Wang H.Y.
        Reduced expression of P120 catenin in cholangiocarcinoma correlated with tumor clinicopathologic parameters.
        World J Gastroenterol. 2008; 14: 3739-3744
        • Zhang K.J.
        • Wang D.S.
        • Zhang S.Y.
        • Jiao X.L.
        • Li C.W.
        • Wang X.S.
        • et al.
        The E-cadherin repressor slug and progression of human extrahepatic hilar cholangiocarcinoma.
        J Exp Clin Cancer Res. 2010; 29: 88
        • Yang B.
        • House M.G.
        • Guo M.
        • Herman J.G.
        • Clark D.P.
        Promoter methylation profiles of tumor suppressor genes in intrahepatic and extrahepatic cholangiocarcinoma.
        Modern Pathol. 2005; 18: 412-420
        • Kong D.
        • Liang J.
        • Li R.
        • Liu S.
        • Wang J.
        • Zhang K.
        • et al.
        Prognostic significance of snail expression in hilar cholangiocarcinoma.
        Braz J Med Biol Res. 2012; 45: 617-624
        • Nitta T.
        • Mitsuhashi T.
        • Hatanaka Y.
        • Miyamoto M.
        • Oba K.
        • Tsuchikawa T.
        • et al.
        Prognostic significance of epithelial-mesenchymal transition-related markers in extrahepatic cholangiocarcinoma: comprehensive immunohistochemical study using a tissue microarray.
        Br J Cancer. 2014; 111: 1363-1372
        • Duangkumpha K.
        • Techasen A.
        • Loilome W.
        • Namwat N.
        • Thanan R.
        • Khuntikeo N.
        • et al.
        BMP-7 blocks the effects of TGF-beta-induced EMT in cholangiocarcinoma.
        Tumour Biol. 2014; 35: 9667-9676
        • Valenta T.
        • Hausmann G.
        • Basler K.
        The many faces and functions of beta-catenin.
        EMBO J. 2012; 31: 2714-2736
        • Koch E.
        • Fiedler W.
        • Tannapfel A.
        • Ballhausen W.G.
        Alteration of the fragile histidine triad gene in intrahepatic cholangiocarcinoma.
        Eur J Gastroenterol Hepatol. 2003; 15: 907-913
        • Sugimachi K.
        • Taguchi K.
        • Aishima S.
        • Tanaka S.
        • Shimada M.
        • Kajiyama K.
        • et al.
        Altered expression of beta-catenin without genetic mutation in intrahepatic cholangiocarcinoma.
        Modern Pathol. 2001; 14: 900-905
        • Tokumoto N.
        • Ikeda S.
        • Ishizaki Y.
        • Kurihara T.
        • Ozaki S.
        • Iseki M.
        • et al.
        Immunohistochemical and mutational analyses of Wnt signaling components and target genes in intrahepatic cholangiocarcinomas.
        Int J Oncol. 2005; 27: 973-980
        • Loilome W.
        • Bungkanjana P.
        • Techasen A.
        • Namwat N.
        • Yongvanit P.
        • Puapairoj A.
        • et al.
        Activated macrophages promote Wnt/beta-catenin signaling in cholangiocarcinoma cells.
        Tumour Biol. 2014; 35: 5357-5367
        • Jachin S.
        • Bae J.S.
        • Sung J.J.
        • Park H.S.
        • Jang K.Y.
        • Chung M.J.
        • et al.
        The role of nuclear EpICD in extrahepatic cholangiocarcinoma: association with beta-catenin.
        Int J Oncol. 2014; 45: 691-698
        • Sato Y.
        • Harada K.
        • Itatsu K.
        • Ikeda H.
        • Kakuda Y.
        • Shimomura S.
        • et al.
        Epithelial-mesenchymal transition induced by transforming growth factor-{beta}1/Snail activation aggravates invasive growth of cholangiocarcinoma.
        Am J Pathol. 2010; 177: 141-152
        • Dos Santos A.
        • Court M.
        • Thiers V.
        • Sar S.
        • Guettier C.
        • Samuel D.
        • et al.
        Identification of cellular targets in human intrahepatic cholangiocarcinoma using laser microdissection and accurate mass and time tag proteomics.
        Mol Cell Proteomics. 2010; 9: 1991-2004
        • Korita P.V.
        • Wakai T.
        • Ajioka Y.
        • Inoue M.
        • Takamura M.
        • Shirai Y.
        • et al.
        Aberrant expression of vimentin correlates with dedifferentiation and poor prognosis in patients with intrahepatic cholangiocarcinoma.
        Anticancer Res. 2010; 30: 2279-2285
        • Boye K.
        • Maelandsmo G.M.
        S100A4 and metastasis: a small actor playing many roles.
        Am J Pathol. 2010; 176: 528-535
        • Sherbet G.V.
        Metastasis promoter S100A4 is a potentially valuable molecular target for cancer therapy.
        Cancer Lett. 2009; 280: 15-30
        • Tian X.
        • Wang Q.
        • Li Y.
        • Hu J.
        • Wu L.
        • Ding Q.
        • et al.
        The expression of S100A4 protein in human intrahepatic cholangiocarcinoma: clinicopathologic significance and prognostic value.
        Pathol Oncol Res. 2015; 21: 195-201
        • Fabris L.
        • Cadamuro M.
        • Moserle L.
        • Dziura J.
        • Cong X.
        • Sambado L.
        • et al.
        Nuclear expression of S100A4 calcium-binding protein increases cholangiocarcinoma invasiveness and metastasization.
        Hepatology. 2011; 54: 890-899
        • Cardinale V.
        • Renzi A.
        • Carpino G.
        • Torrice A.
        • Bragazzi M.C.
        • Giuliante F.
        • et al.
        Profiles of cancer stem cell subpopulations in cholangiocarcinomas.
        Am J Pathol. 2015; 185: 1724-1739
        • Techasen A.
        • Namwat N.
        • Loilome W.
        • Bungkanjana P.
        • Khuntikeo N.
        • Puapairoj A.
        • et al.
        Tumor necrosis factor-alpha (TNF-alpha) stimulates the epithelial-mesenchymal transition regulator Snail in cholangiocarcinoma.
        Med Oncol. 2012; 29: 3083-3091
        • Zhang K.J.
        • Zhang B.Y.
        • Zhang K.P.
        • Tang L.M.
        • Liu S.S.
        • Zhu D.M.
        • et al.
        Clinicopathologic significance of slug expression in human intrahepatic cholangiocarcinoma.
        World J Gastroenterol. 2010; 16: 2554-2557
        • Seol M.A.
        • Chu I.S.
        • Lee M.J.
        • Yu G.R.
        • Cui X.D.
        • Cho B.H.
        • et al.
        Genome-wide expression patterns associated with oncogenesis and sarcomatous transdifferentiation of cholangiocarcinoma.
        BMC Cancer. 2011; 11: 78
        • Mizuguchi Y.
        • Isse K.
        • Specht S.
        • Lunz 3rd, J.G.
        • Corbitt N.
        • Takizawa T.
        • et al.
        Small proline rich protein 2a in benign and malignant liver disease.
        Hepatology. 2014; 59: 1130-1143
        • Techasen A.
        • Namwat N.
        • Loilome W.
        • Duangkumpha K.
        • Puapairoj A.
        • Saya H.
        • et al.
        Tumor necrosis factor-alpha modulates epithelial mesenchymal transition mediators ZEB2 and S100A4 to promote cholangiocarcinoma progression.
        J Hepatobiliary Pancreat Sci. 2014; 21: 703-711
        • Bae Y.K.
        • Choi J.E.
        • Kang S.H.
        • Lee S.J.
        Epithelial-mesenchymal transition phenotype is associated with clinicopathological factors that indicate aggressive biological behavior and poor clinical outcomes in invasive breast cancer.
        J Breast Cancer. 2015; 18: 256-263
        • Kim A.
        • Bae Y.K.
        • Gu M.J.
        • Kim J.Y.
        • Jang K.Y.
        • Bae H.I.
        • et al.
        Epithelial-mesenchymal transition phenotype is associated with patient survival in small intestinal adenocarcinoma.
        Pathology. 2013; 45: 567-573
        • Sung C.O.
        • Park C.K.
        • Kim S.H.
        Classification of epithelial-mesenchymal transition phenotypes in esophageal squamous cell carcinoma is strongly associated with patient prognosis.
        Modern Pathol. 2011; 24: 1060-1068
        • Reichl P.
        • Haider C.
        • Grubinger M.
        • Mikulits W.
        TGF-beta in epithelial to mesenchymal transition and metastasis of liver carcinoma.
        Curr Pharm Des. 2012; 18: 4135-4147
        • Zen Y.
        • Harada K.
        • Sasaki M.
        • Chen T.C.
        • Chen M.F.
        • Yeh T.S.
        • et al.
        Intrahepatic cholangiocarcinoma escapes from growth inhibitory effect of transforming growth factor-beta1 by overexpression of cyclin D1.
        Lab Invest. 2005; 85: 572-581
        • Benckert C.
        • Jonas S.
        • Cramer T.
        • Von Marschall Z.
        • Schafer G.
        • Peters M.
        • et al.
        Transforming growth factor beta 1 stimulates vascular endothelial growth factor gene transcription in human cholangiocellular carcinoma cells.
        Cancer Res. 2003; 63: 1083-1092
        • Lee K.T.
        • Liu T.S.
        Expression of transforming growth factor betas and their signaling receptors in stone-containing intrahepatic bile ducts and cholangiocarcinoma.
        World J Surg. 2003; 27: 1143-1148
        • Claperon A.
        • Mergey M.
        • Aoudjehane L.
        • Ho-Bouldoires T.H.
        • Wendum D.
        • Prignon A.
        • et al.
        Hepatic myofibroblasts promote the progression of human cholangiocarcinoma through activation of epidermal growth factor receptor.
        Hepatology. 2013; 58: 2001-2011
        • Shuang Z.Y.
        • Wu W.C.
        • Xu J.
        • Lin G.
        • Liu Y.C.
        • Lao X.M.
        • et al.
        Transforming growth factor-beta1-induced epithelial-mesenchymal transition generates ALDH-positive cells with stem cell properties in cholangiocarcinoma.
        Cancer Lett. 2014; 354: 320-328
        • Andersen J.B.
        • Spee B.
        • Blechacz B.R.
        • Avital I.
        • Komuta M.
        • Barbour A.
        • et al.
        Genomic and genetic characterization of cholangiocarcinoma identifies therapeutic targets for tyrosine kinase inhibitors.
        Gastroenterology. 2012; 142: 1021-1031e1015
        • Yamada D.
        • Kobayashi S.
        • Wada H.
        • Kawamoto K.
        • Marubashi S.
        • Eguchi H.
        • et al.
        Role of crosstalk between interleukin-6 and transforming growth factor-beta 1 in epithelial-mesenchymal transition and chemoresistance in biliary tract cancer.
        Eur J Cancer. 2013; 49: 1725-1740
        • Techasen A.
        • Loilome W.
        • Namwat N.
        • Dokduang H.
        • Jongthawin J.
        • Yongvanit P.
        Cytokines released from activated human macrophages induce epithelial mesenchymal transition markers of cholangiocarcinoma cells.
        Asian Pac J Cancer Prev. 2012; 13: 115-118
        • Chen Y.
        • Ma L.
        • He Q.
        • Zhang S.
        • Zhang C.
        • Jia W.
        TGF-beta1 expression is associated with invasion and metastasis of intrahepatic cholangiocarcinoma.
        Biol Res. 2015; 48: 26
        • Hirose A.
        • Tajima H.
        • Ohta T.
        • Tsukada T.
        • Okamoto K.
        • Nakanuma S.
        • et al.
        Low-dose paclitaxel inhibits the induction of epidermal-mesenchymal transition in the human cholangiocarcinoma CCKS-1 cell line.
        Oncol Lett. 2013; 6: 915-920
        • Okamoto K.
        • Tajima H.
        • Nakanuma S.
        • Sakai S.
        • Makino I.
        • Kinoshita J.
        • et al.
        Angiotensin II enhances epithelial-to-mesenchymal transition through the interaction between activated hepatic stellate cells and the stromal cell-derived factor-1/CXCR4 axis in intrahepatic cholangiocarcinoma.
        Int J Oncol. 2012; 41: 573-582
        • Qiao P.
        • Li G.
        • Bi W.
        • Yang L.
        • Yao L.
        • Wu D.
        MicroRNA-34a inhibits epithelial mesenchymal transition in human cholangiocarcinoma by targeting Smad4 through transforming growth factor-beta/Smad pathway.
        BMC Cancer. 2015; 15: 469
        • Ling H.
        • Roux E.
        • Hempel D.
        • Tao J.
        • Smith M.
        • Lonning S.
        • et al.
        Transforming growth factor beta neutralization ameliorates pre-existing hepatic fibrosis and reduces cholangiocarcinoma in thioacetamide-treated rats.
        PLoS One. 2013; 8e54499
        • Xu Y.F.
        • Ge F.J.
        • Han B.
        • Yang X.Q.
        • Su H.
        • Zhao A.C.
        • et al.
        High-mobility group box 1 expression and lymph node metastasis in intrahepatic cholangiocarcinoma.
        World J Gastroenterol. 2015; 21: 3256-3265
        • Nitta T.
        • Sato Y.
        • Ren X.S.
        • Harada K.
        • Sasaki M.
        • Hirano S.
        • et al.
        Autophagy may promote carcinoma cell invasion and correlate with poor prognosis in cholangiocarcinoma.
        Int J Clin Exp Pathol. 2014; 7: 4913-4921
        • Boon M.R.
        • van der Horst G.
        • van der Pluijm G.
        • Tamsma J.T.
        • Smit J.W.
        • Rensen P.C.
        Bone morphogenetic protein 7: a broad-spectrum growth factor with multiple target therapeutic potency.
        Cytokine Growth Factor Rev. 2011; 22: 221-229
        • Tanimura Y.
        • Kokuryo T.
        • Tsunoda N.
        • Yamazaki Y.
        • Oda K.
        • Nimura Y.
        • et al.
        Tumor necrosis factor alpha promotes invasiveness of cholangiocarcinoma cells via its receptor, TNFR2.
        Cancer Lett. 2005; 219: 205-213
        • Itatsu K.
        • Sasaki M.
        • Harada K.
        • Yamaguchi J.
        • Ikeda H.
        • Sato Y.
        • et al.
        Phosphorylation of extracellular signal-regulated kinase 1/2, p38 mitogen-activated protein kinase and nuclear translocation of nuclear factor-kappaB are involved in upregulation of matrix metalloproteinase-9 by tumour necrosis factor-alpha.
        Liver Int. 2009; 29: 291-298
        • Yokomuro S.
        • Tsuji H.
        • Lunz 3rd, J.G.
        • Sakamoto T.
        • Ezure T.
        • Murase N.
        • et al.
        Growth control of human biliary epithelial cells by interleukin 6, hepatocyte growth factor, transforming growth factor beta1, and activin A: comparison of a cholangiocarcinoma cell line with primary cultures of non-neoplastic biliary epithelial cells.
        Hepatology. 2000; 32: 26-35
        • Nehls O.
        • Gregor M.
        • Klump B.
        Serum and bile markers for cholangiocarcinoma.
        Semin Liver Dis. 2004; 24: 139-154
        • Zhou Q.X.
        • Jiang X.M.
        • Wang Z.D.
        • Li C.L.
        • Cui Y.F.
        Enhanced expression of suppresser of cytokine signaling 3 inhibits the IL-6-induced epithelial-to-mesenchymal transition and cholangiocarcinoma cell metastasis.
        Med Oncol. 2015; 32: 105
        • Claperon A.
        • Guedj N.
        • Mergey M.
        • Vignjevic D.
        • Desbois-Mouthon C.
        • Boissan M.
        • et al.
        Loss of EBP50 stimulates EGFR activity to induce EMT phenotypic features in biliary cancer cells.
        Oncogene. 2012; 31: 1376-1388
        • Yoon J.H.
        • Gwak G.Y.
        • Lee H.S.
        • Bronk S.F.
        • Werneburg N.W.
        • Gores G.J.
        Enhanced epidermal growth factor receptor activation in human cholangiocarcinoma cells.
        J Hepatol. 2004; 41: 808-814
        • Sia D.
        • Hoshida Y.
        • Villanueva A.
        • Roayaie S.
        • Ferrer J.
        • Tabak B.
        • et al.
        Integrative molecular analysis of intrahepatic cholangiocarcinoma reveals 2 classes that have different outcomes.
        Gastroenterology. 2013; 144: 829-840
        • Lee M.J.
        • Yu G.R.
        • Yoo H.J.
        • Kim J.H.
        • Yoon B.I.
        • Choi Y.K.
        • et al.
        ANXA8 down-regulation by EGF-FOXO4 signaling is involved in cell scattering and tumor metastasis of cholangiocarcinoma.
        Gastroenterology. 2009; 137 (1150 e1131–e1139): 1138-1150
        • Wang W.
        • Zhang J.
        • Zhan X.
        • Lin T.
        • Yang M.
        • Hu J.
        • et al.
        SOX4 is associated with poor prognosis in cholangiocarcinoma.
        Biochem Biophys Res Commun. 2014; 452: 614-621
        • Khansaard W.
        • Techasen A.
        • Namwat N.
        • Yongvanit P.
        • Khuntikeo N.
        • Puapairoj A.
        • et al.
        Increased EphB2 expression predicts cholangiocarcinoma metastasis.
        Tumour Biol. 2014; 35: 10031-10041
        • Cui X.D.
        • Lee M.J.
        • Kim J.H.
        • Hao P.P.
        • Liu L.
        • Yu G.R.
        • et al.
        Activation of mammalian target of rapamycin complex 1 (mTORC1) and Raf/Pyk2 by growth factor-mediated Eph receptor 2 (EphA2) is required for cholangiocarcinoma growth and metastasis.
        Hepatology. 2013; 57: 2248-2260
        • Francis H.
        • Meng F.
        • Gaudio E.
        • Alpini G.
        Histamine regulation of biliary proliferation.
        J Hepatol. 2012; 56: 1204-1206
        • Meng F.
        • Han Y.
        • Staloch D.
        • Francis T.
        • Stokes A.
        • Francis H.
        The H4 histamine receptor agonist, clobenpropit, suppresses human cholangiocarcinoma progression by disruption of epithelial mesenchymal transition and tumor metastasis.
        Hepatology. 2011; 54: 1718-1728
        • Gentilini A.
        • Rombouts K.
        • Galastri S.
        • Caligiuri A.
        • Mingarelli E.
        • Mello T.
        • et al.
        Role of the stromal-derived factor-1 (SDF-1)-CXCR4 axis in the interaction between hepatic stellate cells and cholangiocarcinoma.
        J Hepatol. 2012; 57: 813-820
        • Zhao S.
        • Wang J.
        • Qin C.
        Blockade of CXCL12/CXCR4 signaling inhibits intrahepatic cholangiocarcinoma progression and metastasis via inactivation of canonical Wnt pathway.
        J Exp Clin Cancer Res. 2014; 33: 103
        • Ishimura N.
        • Bronk S.F.
        • Gores G.J.
        Inducible nitric oxide synthase up-regulates Notch-1 in mouse cholangiocytes: implications for carcinogenesis.
        Gastroenterology. 2005; 128: 1354-1368
        • Zhou Q.
        • Wang Y.
        • Peng B.
        • Liang L.
        • Li J.
        The roles of Notch1 expression in the migration of intrahepatic cholangiocarcinoma.
        BMC Cancer. 2013; 13: 244
        • Wu W.R.
        • Zhang R.
        • Shi X.D.
        • Zhu M.S.
        • Xu L.B.
        • Zeng H.
        • et al.
        Notch1 is overexpressed in human intrahepatic cholangiocarcinoma and is associated with its proliferation, invasiveness and sensitivity to 5-fluorouracil in vitro.
        Oncol Rep. 2014; 31: 2515-2524
        • Wu W.R.
        • Shi X.D.
        • Zhang R.
        • Zhu M.S.
        • Xu L.B.
        • Yu X.H.
        • et al.
        Clinicopathological significance of aberrant Notch receptors in intrahepatic cholangiocarcinoma.
        Int J Clin Exp Pathol. 2014; 7: 3272-3279
        • Yoon H.A.
        • Noh M.H.
        • Kim B.G.
        • Han J.S.
        • Jang J.S.
        • Choi S.R.
        • et al.
        Clinicopathological significance of altered Notch signaling in extrahepatic cholangiocarcinoma and gallbladder carcinoma.
        World J Gastroenterol. 2011; 17: 4023-4030
        • El Khatib M.
        • Bozko P.
        • Palagani V.
        • Malek N.P.
        • Wilkens L.
        • Plentz R.R.
        Activation of Notch signaling is required for cholangiocarcinoma progression and is enhanced by inactivation of p53 in vivo.
        PLoS One. 2013; 8e77433
        • Delous M.
        • Yin C.
        • Shin D.
        • Ninov N.
        • Debrito Carten J.
        • Pan L.
        • et al.
        Sox9b is a key regulator of pancreaticobiliary ductal system development.
        PLoS Genet. 2012; 8e1002754
        • Villanueva A.
        • Alsinet C.
        • Yanger K.
        • Hoshida Y.
        • Zong Y.
        • Toffanin S.
        • et al.
        Notch signaling is activated in human hepatocellular carcinoma and induces tumor formation in mice.
        Gastroenterology. 2012; 143: 1660-1669e1667
        • Matsushima H.
        • Kuroki T.
        • Kitasato A.
        • Adachi T.
        • Tanaka T.
        • Hirabaru M.
        • et al.
        Sox9 expression in carcinogenesis and its clinical significance in intrahepatic cholangiocarcinoma.
        Dig Liver Dis. 2015; 47: 1067-1075
        • Capaccione K.M.
        • Hong X.
        • Morgan K.M.
        • Liu W.
        • Bishop J.M.
        • Liu L.
        • et al.
        Sox9 mediates Notch1-induced mesenchymal features in lung adenocarcinoma.
        Oncotarget. 2014; 5: 3636-3650
        • El Khatib M.
        • Kalnytska A.
        • Palagani V.
        • Kossatz U.
        • Manns M.P.
        • Malek N.P.
        • et al.
        Inhibition of hedgehog signaling attenuates carcinogenesis in vitro and increases necrosis of cholangiocellular carcinoma.
        Hepatology. 2013; 57: 1035-1045
        • Tang L.
        • Tan Y.X.
        • Jiang B.G.
        • Pan Y.F.
        • Li S.X.
        • Yang G.Z.
        • et al.
        The prognostic significance and therapeutic potential of hedgehog signaling in intrahepatic cholangiocellular carcinoma.
        Clin Cancer Res. 2013; 19: 2014-2024
        • Al-Bahrani R.
        • Nagamori S.
        • Leng R.
        • Petryk A.
        • Sergi C.
        Differential expression of sonic hedgehog protein in human hepatocellular carcinoma and intrahepatic cholangiocarcinoma.
        Pathol Oncol Res. 2015; 21: 901-908
        • Wutka A.
        • Palagani V.
        • Barat S.
        • Chen X.
        • El Khatib M.
        • Gotze J.
        • et al.
        Capsaicin treatment attenuates cholangiocarcinoma carcinogenesis.
        PLoS One. 2014; 9e95605
        • Li J.
        • Yao L.
        • Li G.
        • Ma D.
        • Sun C.
        • Gao S.
        • et al.
        MiR-221 promotes epithelial-mesenchymal transition through targeting PTEN and forms a positive feedback loop with beta-catenin/c-Jun signaling pathway in extra-hepatic cholangiocarcinoma.
        PLoS One. 2015; 10e0141168
        • Oishi N.
        • Kumar M.R.
        • Roessler S.
        • Ji J.
        • Forgues M.
        • Budhu A.
        • et al.
        Transcriptomic profiling reveals hepatic stem-like gene signatures and interplay of miR-200c and epithelial-mesenchymal transition in intrahepatic cholangiocarcinoma.
        Hepatology. 2012; 56: 1792-1803
        • Qiu Y.H.
        • Wei Y.P.
        • Shen N.J.
        • Wang Z.C.
        • Kan T.
        • Yu W.L.
        • et al.
        MiR-204 inhibits epithelial to mesenchymal transition by targeting slug in intrahepatic cholangiocarcinoma cells.
        Cell Physiol Biochem. 2013; 32: 1331-1341
        • Li B.
        • Han Q.
        • Zhu Y.
        • Yu Y.
        • Wang J.
        • Jiang X.
        Down-regulation of miR-214 contributes to intrahepatic cholangiocarcinoma metastasis by targeting Twist.
        FEBS J. 2012; 279: 2393-2398
        • Liu Z.
        • Jin Z.Y.
        • Liu C.H.
        • Xie F.
        • Lin X.S.
        • Huang Q.
        MicroRNA-21 regulates biological behavior by inducing EMT in human cholangiocarcinoma.
        Int J Clin Exp Pathol. 2015; 8: 4684-4694
        • Fukase K.
        • Ohtsuka H.
        • Onogawa T.
        • Oshio H.
        • Ii T.
        • Mutoh M.
        • et al.
        Bile acids repress E-cadherin through the induction of Snail and increase cancer invasiveness in human hepatobiliary carcinoma.
        Cancer Sci. 2008; 99: 1785-1792
        • Werneburg N.W.
        • Yoon J.H.
        • Higuchi H.
        • Gores G.J.
        Bile acids activate EGF receptor via a TGF-alpha-dependent mechanism in human cholangiocyte cell lines.
        Am J Physiol Gastrointest Liver Physiol. 2003; 285: G31-G36
        • Balsano C.
        • Conti B.
        • Arciello M.
        Regarding: epithelial-mesenchymal transition induced by hepatitis C virus core protein in cholangiocarcinoma.
        Ann Surg Oncol. 2011; 18 ([Author reply 897]): 896
        • Li T.
        • Li D.
        • Cheng L.
        • Wu H.
        • Gao Z.
        • Liu Z.
        • et al.
        Epithelial-mesenchymal transition induced by hepatitis C virus core protein in cholangiocarcinoma.
        Ann Surg Oncol. 2010; 17: 1937-1944
        • Demetris A.J.
        • Specht S.
        • Nozaki I.
        • Lunz 3rd, J.G.
        • Stolz D.B.
        • Murase N.
        • et al.
        Small proline-rich proteins (SPRR) function as SH3 domain ligands, increase resistance to injury and are associated with epithelial-mesenchymal transition (EMT) in cholangiocytes.
        J Hepatol. 2008; 48: 276-288
        • Yang Y.
        • Liu Y.
        • He J.C.
        • Wang J.M.
        • Schemmer P.
        • Ma C.Q.
        • et al.
        14-3-3zeta and aPKC-iota synergistically facilitate epithelial-mesenchymal transition of cholangiocarcinoma via GSK-3beta/snail signaling pathway.
        Oncotarget. 2016; ([Epub ahead of print])
        • Zhang C.
        • Liu L.X.
        • Dong Z.R.
        • Shi G.M.
        • Cai J.B.
        • Zhang P.F.
        • et al.
        Up-regulation of 14-3-3zeta expression in intrahepatic cholangiocarcinoma and its clinical implications.
        Tumour Biol. 2015; 36: 1781-1789
        • Zhou C.
        • Zheng Y.
        • Li L.
        • Zhai W.
        • Li R.
        • Liang Z.
        • et al.
        Adrenomedullin promotes intrahepatic cholangiocellular carcinoma metastasis and invasion by inducing epithelial-mesenchymal transition.
        Oncol Rep. 2015; 34: 610-616
        • Watanabe A.
        • Suzuki H.
        • Yokobori T.
        • Altan B.
        • Kubo N.
        • Araki K.
        • et al.
        Forkhead box protein C2 contributes to invasion and metastasis of extrahepatic cholangiocarcinoma, resulting in a poor prognosis.
        Cancer Sci. 2013; 104: 1427-1432
        • Zhu Z.
        • Chen W.
        • Yin X.
        • Lai J.
        • Wang Q.
        • Liang L.
        • et al.
        WAVE3 Induces EMT and promotes migration and invasion in intrahepatic cholangiocarcinoma.
        Dig Dis Sci. 2016; 61: 1950-1960
        • Xu Y.F.
        • Yang X.Q.
        • Lu X.F.
        • Guo S.
        • Liu Y.
        • Iqbal M.
        • et al.
        Fibroblast growth factor receptor 4 promotes progression and correlates to poor prognosis in cholangiocarcinoma.
        Biochem Biophys Res Commun. 2014; 446: 54-60
        • Yang H.
        • Lu X.
        • Liu Z.
        • Chen L.
        • Xu Y.
        • Wang Y.
        • et al.
        FBXW7 suppresses epithelial-mesenchymal transition, stemness and metastatic potential of cholangiocarcinoma cells.
        Oncotarget. 2015; 6: 6310-6325
        • Enkhbold C.
        • Utsunomiya T.
        • Morine Y.
        • Imura S.
        • Ikemoto T.
        • Arakawa Y.
        • et al.
        Loss of FBXW7 expression is associated with poor prognosis in intrahepatic cholangiocarcinoma.
        Hepatol Res. 2014; 44: E346-E352
        • Sribenja S.
        • Sawanyawisuth K.
        • Kraiklang R.
        • Wongkham C.
        • Vaeteewoottacharn K.
        • Obchoei S.
        • et al.
        Suppression of thymosin beta10 increases cell migration and metastasis of cholangiocarcinoma.
        BMC Cancer. 2013; 13: 430
        • Yang L.X.
        • Gao Q.
        • Shi J.Y.
        • Wang Z.C.
        • Zhang Y.
        • Gao P.T.
        • et al.
        Mitogen-activated protein kinase kinase kinase 4 deficiency in intrahepatic cholangiocarcinoma leads to invasive growth and epithelial-mesenchymal transition.
        Hepatology. 2015; 62: 1804-1816
        • Sirica A.E.
        The role of cancer-associated myofibroblasts in intrahepatic cholangiocarcinoma.
        Nat Rev Gastroenterol Hepatol. 2012; 9: 44-54
        • Chu A.S.
        • Diaz R.
        • Hui J.J.
        • Yanger K.
        • Zong Y.
        • Alpini G.
        • et al.
        Lineage tracing demonstrates no evidence of cholangiocyte epithelial-to-mesenchymal transition in murine models of hepatic fibrosis.
        Hepatology. 2011; 53: 1685-1695
        • Cadamuro M.
        • Nardo G.
        • Indraccolo S.
        • Dall’olmo L.
        • Sambado L.
        • Moserle L.
        • et al.
        Platelet-derived growth factor-D and Rho GTPases regulate recruitment of cancer-associated fibroblasts in cholangiocarcinoma.
        Hepatology. 2013; 58: 1042-1053
        • Ohira S.
        • Sasaki M.
        • Harada K.
        • Sato Y.
        • Zen Y.
        • Isse K.
        • et al.
        Possible regulation of migration of intrahepatic cholangiocarcinoma cells by interaction of CXCR4 expressed in carcinoma cells with tumor necrosis factor-alpha and stromal-derived factor-1 released in stroma.
        Am J Pathol. 2006; 168: 1155-1168
        • Hasita H.
        • Komohara Y.
        • Okabe H.
        • Masuda T.
        • Ohnishi K.
        • Lei X.F.
        • et al.
        Significance of alternatively activated macrophages in patients with intrahepatic cholangiocarcinoma.
        Cancer Sci. 2010; 101: 1913-1919
        • Thanee M.
        • Loilome W.
        • Techasen A.
        • Namwat N.
        • Boonmars T.
        • Pairojkul C.
        • et al.
        Quantitative changes in tumor-associated M2 macrophages characterize cholangiocarcinoma and their association with metastasis.
        Asian Pac J Cancer Prev. 2015; 16: 3043-3050
        • Boulter L.
        • Guest R.V.
        • Kendall T.J.
        • Wilson D.H.
        • Wojtacha D.
        • Robson A.J.
        • et al.
        WNT signaling drives cholangiocarcinoma growth and can be pharmacologically inhibited.
        J Clin Invest. 2015; 125: 1269-1285
        • Vincan E.
        • Barker N.
        The upstream components of the Wnt signalling pathway in the dynamic EMT and MET associated with colorectal cancer progression.
        Clin Exp Metastasis. 2008; 25: 657-663
        • Arend R.C.
        • Londono-Joshi A.I.
        • Straughn Jr., J.M.
        • Buchsbaum D.J.
        The Wnt/beta-catenin pathway in ovarian cancer: a review.
        Gynecol Oncol. 2013; 131: 772-779
        • Francis H.
        • Meininger C.J.
        A review of mast cells and liver disease: What have we learned?.
        Dig Liver Dis. 2010; 42: 529-536
        • Johnson C.
        • Huynh V.
        • Hargrove L.
        • Kennedy L.
        • Graf-Eaton A.
        • Owens J.
        • et al.
        Inhibition of mast cell-derived histamine decreases human cholangiocarcinoma growth and differentiation via c-kit/stem cell factor-dependent signaling.
        Am J Pathol. 2016; 186: 123-133
        • Mertens J.C.
        • Fingas C.D.
        • Christensen J.D.
        • Smoot R.L.
        • Bronk S.F.
        • Werneburg N.W.
        • et al.
        Therapeutic effects of deleting cancer-associated fibroblasts in cholangiocarcinoma.
        Cancer Res. 2013; 73: 897-907
        • Zhang K.
        • Chen D.
        • Wang X.
        • Zhang S.
        • Wang J.
        • Gao Y.
        • et al.
        RNA interference targeting slug increases cholangiocarcinoma cell sensitivity to cisplatin via upregulating PUMA.
        Int J Mol Sci. 2011; 12: 385-400
        • Kim S.
        • Yao J.
        • Suyama K.
        • Qian X.
        • Qian B.Z.
        • Bandyopadhyay S.
        • et al.
        Slug promotes survival during metastasis through suppression of Puma-mediated apoptosis.
        Cancer Res. 2014; 74: 3695-3706
        • Findlay V.J.
        • Wang C.
        • Watson D.K.
        • Camp E.R.
        Epithelial-to-mesenchymal transition and the cancer stem cell phenotype: insights from cancer biology with therapeutic implications for colorectal cancer.
        Cancer Gene Ther. 2014; 21: 181-187
        • Lu Z.
        • Wang J.
        • Zheng T.
        • Liang Y.
        • Yin D.
        • Song R.
        • et al.
        FTY720 inhibits proliferation and epithelial-mesenchymal transition in cholangiocarcinoma by inactivating STAT3 signaling.
        BMC Cancer. 2014; 14: 783
        • Xie Y.
        • Wehrkamp C.J.
        • Li J.
        • Wang Y.
        • Wang Y.
        • Mott J.L.
        • et al.
        Delivery of miR-200c mimic with poly(amido amine) CXCR4 antagonists for combined inhibition of cholangiocarcinoma cell invasiveness.
        Mol Pharm. 2016; 13: 1073-1080
        • Samatov T.R.
        • Tonevitsky A.G.
        • Schumacher U.
        Epithelial-mesenchymal transition: focus on metastatic cascade, alternative splicing, non-coding RNAs and modulating compounds.
        Mol Cancer. 2013; 12: 107
        • Wilson C.
        • Nicholes K.
        • Bustos D.
        • Lin E.
        • Song Q.
        • Stephan J.P.
        • et al.
        Overcoming EMT-associated resistance to anti-cancer drugs via Src/FAK pathway inhibition.
        Oncotarget. 2014; 5: 7328-7341
        • Vaquero J.
        • Clapéron A.
        • Mergey M.
        • Desbois-Mouthon C.
        • Praz F.
        • Fouassier L.
        Long-term inhibition of EGFR in human cholangiocarcinoma cells leads to the induction of an epithelial to mesenchymal transition program and activation of Insulin/Insulin Growth Factor 1 Receptors.
        J Hepatol. 2015; 62: S797