Advertisement

NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice

Published:February 03, 2017DOI:https://doi.org/10.1016/j.jhep.2017.01.022

      Background & Aims

      NOD-like receptor protein 3 (NLRP3) inflammasome activation occurs in Non-alcoholic fatty liver disease (NAFLD). We used the first small molecule NLRP3 inhibitor, MCC950, to test whether inflammasome blockade alters inflammatory recruitment and liver fibrosis in two murine models of steatohepatitis.

      Methods

      We fed foz/foz and wild-type mice an atherogenic diet for 16 weeks, gavaged MCC950 or vehicle until 24 weeks, then determined NAFLD phenotype. In mice fed an methionine/choline deficient (MCD) diet, we gavaged MCC950 or vehicle for 6 weeks and determined the effects on liver fibrosis.

      Results

      In vehicle-treated foz/foz mice, hepatic expression of NLRP3, pro-IL-1β, active caspase-1 and IL-1β increased at 24 weeks, in association with cholesterol crystal formation and NASH pathology; plasma IL-1β, IL-6, MCP-1, ALT/AST all increased. MCC950 treatment normalized hepatic caspase 1 and IL-1β expression, plasma IL-1β, MCP-1 and IL-6, lowered ALT/AST, and reduced the severity of liver inflammation including designation as NASH pathology, and liver fibrosis. In vitro, cholesterol crystals activated Kupffer cells and macrophages to release IL-1β; MCC950 abolished this, and the associated neutrophil migration. MCD diet-fed mice developed fibrotic steatohepatitis; MCC950 suppressed the increase in hepatic caspase 1 and IL-1β, lowered numbers of macrophages and neutrophils in the liver, and improved liver fibrosis.

      Conclusion

      MCC950, an NLRP3 selective inhibitor, improved NAFLD pathology and fibrosis in obese diabetic mice. This is potentially attributable to the blockade of cholesterol crystal-mediated NLRP3 activation in myeloid cells. MCC950 reduced liver fibrosis in MCD-fed mice. Targeting NLRP3 is a logical direction in pharmacotherapy of NASH.

      Lay summary

      Fatty liver disease caused by being overweight with diabetes and a high risk of heart attack, termed non-alcoholic steatohepatitis (NASH), is the most common serious liver disease with no current treatment. There could be several causes of inflammation in NASH, but activation of a protein scaffold within cells termed the inflammasome (NLRP3) has been suggested to play a role. Here we show that cholesterol crystals could be one pathway to activate the inflammasome in NASH. We used a drug called MCC950, which has already been shown to block NLRP3 activation, in an attempt to reduce liver injury in NASH. This drug partly reversed liver inflammation, particularly in obese diabetic mice that most closely resembles the human context of NASH. In addition, such dampening of liver inflammation in NASH achieved with MCC950 partly reversed liver scarring, the process that links NASH to the development of cirrhosis.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Hepatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      Author names in bold designate shared co-first authorship

        • Ahmed A.
        • Wong R.J.
        • Harrison S.A.
        Nonalcoholic fatty liver disease review: Diagnosis, treatment, and outcomes.
        Clin Gastroenterol Hepatol. 2015; 13: 2062-2070
      1. Farrell G.C. McCullough A.J. Day C.P. Non-alcoholic fatty liver disease: A practical guide. Wiley-Blackwell, Chichester2013
        • Angulo P.
        • Kleiner D.E.
        • Dam-Larsen S.
        • Adams L.A.
        • Bjornsson E.S.
        • Charatcharoenwitthaya P.
        • et al.
        Liver fibrosis, but no other histologic features, is associated with long-term outcomes of patients with nonalcoholic fatty liver disease.
        Gastroenterology. 2015; 149: 389-397e310
        • Torres D.M.
        • Harrison S.A.
        Nonalcoholic fatty liver disease: Fibrosis portends a worse prognosis.
        Hepatology. 2015; 61: 1462-1464
        • Cusi K.
        Role of obesity and lipotoxicity in the development of nonalcoholic steatohepatitis: Pathophysiology and clinical implications.
        Gastroenterology. 2012; 142: 711-725
        • Larter C.Z.
        • Chitturi S.
        • Heydet D.
        • Farrell G.C.
        A fresh look at NASH pathogenesis. Part 1: The metabolic movers.
        J Gastroenterol Hepatol. 2010; 25: 672-690
        • Neuschwander-Tetri B.A.
        Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: The central role of nontriglyceride fatty acid metabolites.
        Hepatology. 2010; 52: 774-788
        • Gao B.
        Innate immunity and steatohepatitis: A critical role of another toll (tlr-9).
        Gastroenterology. 2010; 139: 27-30
        • Kubes P.
        • Mehal W.Z.
        Sterile inflammation in the liver.
        Gastroenterology. 2012; 143: 1158-1172
        • Maher J.J.
        • Leon P.
        • Ryan J.C.
        Beyond insulin resistance: Innate immunity in nonalcoholic steatohepatitis.
        Hepatology. 2008; 48: 670-678
        • Csak T.
        • Pillai A.
        • Ganz M.
        • Lippai D.
        • Petrasek J.
        • Park J.K.
        • et al.
        Both bone marrow-derived and non-bone marrow-derived cells contribute to aim2 and nlrp3 inflammasome activation in a myd88-dependent manner in dietary steatohepatitis.
        Liver Int. 2014; 34: 1402-1413
        • Dixon L.J.
        • Berk M.
        • Thapaliya S.
        • Papouchado B.G.
        • Feldstein A.E.
        Caspase-1-mediated regulation of fibrogenesis in diet-induced steatohepatitis.
        Lab Invest. 2012; 92: 713-723
        • Dixon L.J.
        • Flask C.A.
        • Papouchado B.G.
        • Feldstein A.E.
        • Nagy L.E.
        Caspase-1 as a central regulator of high fat diet-induced non-alcoholic steatohepatitis.
        PLoS One. 2013; 8e56100
        • Ganz M.
        • Csak T.
        • Szabo G.
        High fat diet feeding results in gender specific steatohepatitis and inflammasome activation.
        World J Gastroenterol. 2014; 20: 8525-8534
        • Huang H.
        • Chen H.W.
        • Evankovich J.
        • Yan W.
        • Rosborough B.R.
        • Nace G.W.
        • et al.
        Histones activate the NLRP3 inflammasome in Kupffer cells during sterile inflammatory liver injury.
        J Immunol. 2013; 191: 2665-2679
        • Masters S.L.
        Specific inflammasomes in complex diseases.
        Clin Immunol. 2013; 147: 223-228
        • Petrasek J.
        • Bala S.
        • Csak T.
        • Lippai D.
        • Kodys K.
        • Menashy V.
        • et al.
        Il-1 receptor antagonist ameliorates inflammasome-dependent alcoholic steatohepatitis in mice.
        J Clin Invest. 2012; 122: 3476-3489
        • Szabo G.
        • Petrasek J.
        Inflammasome activation and function in liver disease.
        Nat Rev Gastroenterol Hepatol. 2015; 12: 387-400
        • Wree A.
        • McGeough M.D.
        • Pena C.A.
        • Schlattjan M.
        • Li H.
        • Inzaugarat M.E.
        • et al.
        NLRP3 inflammasome activation is required for fibrosis development in nafld.
        J Mol Med (Berl). 2014; 92: 1069-1082
        • Wree A.
        • Eguchi A.
        • McGeough M.D.
        • Pena C.A.
        • Johnson C.D.
        • Canbay A.
        • et al.
        NLRP3 inflammasome activation results in hepatocyte pyroptosis, liver inflammation, and fibrosis in mice.
        Hepatology. 2014; 59: 898-910
        • Hara H.
        • Tsuchiya K.
        • Kawamura I.
        • Fang R.
        • Hernandez-Cuellar E.
        • Shen Y.
        • et al.
        Phosphorylation of the adaptor ASC acts as a molecular switch that controls the formation of speck-like aggregates and inflammasome activity.
        Nat Immunol. 2013; 14: 1247-1255
        • Schroder K.
        • Tschopp J.
        The inflammasomes.
        Cell. 2010; 140: 821-832
        • Duewell P.
        • Kono H.
        • Rayner K.J.
        • Sirois C.M.
        • Vladimer G.
        • Bauernfeind F.G.
        • et al.
        NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals.
        Nature. 2010; 464: 1357-1361
        • Rajamaki K.
        • Lappalainen J.
        • Oorni K.
        • Valimaki E.
        • Matikainen S.
        • Kovanen P.T.
        • et al.
        Cholesterol crystals activate the NLRP3 inflammasome in human macrophages: A novel link between cholesterol metabolism and inflammation.
        PLoS One. 2010; 5e11765
        • Csak T.
        • Ganz M.
        • Pespisa J.
        • Kodys K.
        • Dolganiuc A.
        • Szabo G.
        Fatty acid and endotoxin activate inflammasomes in mouse hepatocytes that release danger signals to stimulate immune cells.
        Hepatology. 2011; 54: 133-144
        • Coll R.C.
        • Robertson A.A.
        • Chae J.J.
        • Higgins S.C.
        • Munoz-Planillo R.
        • Inserra M.C.
        • et al.
        A small-molecule inhibitor of the nlrp3 inflammasome for the treatment of inflammatory diseases.
        Nat Med. 2015; 21: 248-255
        • Ioannou G.N.
        • Haigh W.G.
        • Thorning D.
        • Savard C.
        Hepatic cholesterol crystals and crown-like structures distinguish NASH from simple steatosis.
        J Lipid Res. 2013; 54: 1326-1334
        • Larter C.Z.
        • Yeh M.M.
        Animal models of NASH: Getting both pathology and metabolic context right.
        J Gastroenterol Hepatol. 2008; 23: 1635-1648
        • Larter C.Z.
        • Yeh M.M.
        • Van Rooyen D.M.
        • Teoh N.C.
        • Brooling J.
        • Hou J.Y.
        • et al.
        Roles of adipose restriction and metabolic factors in progression of steatosis to steatohepatitis in obese, diabetic mice.
        J Gastroenterol Hepatol. 2009; 24: 1658-1668
        • Van Rooyen D.M.
        • Larter C.Z.
        • Haigh W.G.
        • Yeh M.M.
        • Ioannou G.
        • Kuver R.
        • et al.
        Hepatic free cholesterol accumulates in obese, diabetic mice and causes nonalcoholic steatohepatitis.
        Gastroenterology. 2011; 141: 1393-1403
        • Ioannou G.N.
        • Van Rooyen D.M.
        • Savard C.
        • Haigh W.G.
        • Yeh M.M.
        • Teoh N.C.
        • et al.
        Cholesterol-lowering drugs cause dissolution of cholesterol crystals and disperse Kupffer cell crown-like structures during resolution of nash.
        J Lipid Res. 2015; 56: 277-285
        • Leclercq I.A.
        • Farrell G.C.
        • Field J.
        • Bell D.R.
        • Gonzalez F.J.
        • Robertson G.R.
        Cyp2e1 and Cyp4a as microsomal catalysts of lipid peroxides in murine nonalcoholic steatohepatitis.
        J Clin Invest. 2000; 105: 1067-1075
        • Robertson G.
        • Leclercq I.
        • Farrell G.C.
        Nonalcoholic steatosis and steatohepatitis. II. Cytochrome P-450 enzymes and oxidative stress.
        Am J Physiol Gastrointest Liver Physiol. 2001; 281: G1135-G1139
        • Gan L.T.
        • Van Rooyen D.M.
        • Koina M.E.
        • McCuskey R.S.
        • Teoh N.C.
        • Farrell G.C.
        Hepatocyte free cholesterol lipotoxicity results from JNK1-mediated mitochondrial injury and is HMGB1 and TLR4-dependent.
        J Hepatol. 2014; 61: 1376-1384
        • Froh M.
        • Konno A.
        • Thurman R.G.
        Isolation of liver Kupffer cells.
        Curr Protoc Toxicol. 2003; Chapter 14: Unit14.14
        • Teoh N.C.
        • Ajamieh H.
        • Wong H.J.
        • Croft K.
        • Mori T.
        • Allison A.C.
        • et al.
        Microparticles mediate hepatic ischemia-reperfusion injury and are the targets of diannexin (ASP8597).
        PLoS One. 2014; 9e104376
        • Farrell G.C.
        • Mridha A.R.
        • Yeh M.M.
        • Arsov T.
        • Van Rooyen D.M.
        • Brooling J.
        • et al.
        Strain dependence of diet-induced NASH and liver fibrosis in obese mice is linked to diabetes and inflammatory phenotype.
        Liver Int. 2014; 34: 1084-1093
        • Caballero F.
        • Fernandez A.
        • De Lacy A.M.
        • Fernandez-Checa J.C.
        • Caballeria J.
        • Garcia-Ruiz C.
        Enhanced free cholesterol, SREBP-2 and STAR expression in human NASH.
        J Hepatol. 2009; 50: 789-796
        • Min H.K.
        • Kapoor A.
        • Fuchs M.
        • Mirshahi F.
        • Zhou H.
        • Maher J.
        • et al.
        Increased hepatic synthesis and dysregulation of cholesterol metabolism is associated with the severity of nonalcoholic fatty liver disease.
        Cell Metab. 2012; 15: 665-674
        • Musso G.
        • Gambino R.
        • Cassader M.
        Cholesterol metabolism and the pathogenesis of non-alcoholic steatohepatitis.
        Prog Lipid Res. 2013; 52: 175-191
        • Puri P.
        • Baillie R.A.
        • Wiest M.M.
        • Mirshahi F.
        • Choudhury J.
        • Cheung O.
        • et al.
        A lipidomic analysis of nonalcoholic fatty liver disease.
        Hepatology. 2007; 46: 1081-1090
        • Larter C.Z.
        • Yeh M.M.
        • Haigh W.G.
        • Williams J.
        • Brown S.
        • Bell-Anderson K.S.
        • et al.
        Hepatic free fatty acids accumulate in experimental steatohepatitis: Role of adaptive pathways.
        J Hepatol. 2008; 48: 638-647
        • Pickens M.K.
        • Yan J.S.
        • Ng R.K.
        • Ogata H.
        • Grenert J.P.
        • Beysen C.
        • et al.
        Dietary sucrose is essential to the development of liver injury in the methionine-choline-deficient model of steatohepatitis.
        J Lipid Res. 2009; 50: 2072-2082
        • Ouyang X.
        • Ghani A.
        • Mehal W.Z.
        Inflammasome biology in fibrogenesis.
        Biochim Biophys Acta. 2013; 1832: 979-988
        • Henao-Mejia J.
        • Elinav E.
        • Jin C.
        • Hao L.
        • Mehal W.Z.
        • Strowig T.
        • et al.
        Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity.
        Nature. 2012; 482: 179-185
        • Wen H.
        • Ting J.P.
        • O'Neill L.A.
        A role for the NLRP3 inflammasome in metabolic diseases–did warburg miss inflammation?.
        Nat Immunol. 2012; 13: 352-357
        • Ioannou G.N.
        The role of cholesterol in the pathogenesis of NASH.
        Trends Endocrinol Metab. 2016; 27: 84-95
        • Li L.
        • Chen L.
        • Hu L.
        • Liu Y.
        • Sun H.Y.
        • Tang J.
        • et al.
        Nuclear factor high-mobility group box1 mediating the activation of Toll-like receptor 4 signaling in hepatocytes in the early stage of nonalcoholic fatty liver disease in mice.
        Hepatology. 2011; 54: 1620-1630
        • Miura K.
        • Kodama Y.
        • Inokuchi S.
        • Schnabl B.
        • Aoyama T.
        • Ohnishi H.
        • et al.
        Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1beta in mice.
        Gastroenterology. 2010; 139: 323-334e327
        • Kakisaka K.
        • Cazanave S.C.
        • Fingas C.D.
        • Guicciardi M.E.
        • Bronk S.F.
        • Werneburg N.W.
        • et al.
        Mechanisms of lysophosphatidylcholine-induced hepatocyte lipoapoptosis.
        Am J Physiol Gastrointest Liver Physiol. 2012; 302: G77-G84