Advertisement

Biliary bile acids in hepatobiliary injury – What is the link?

      Summary

      The main trigger for liver injury in acquired cholestatic liver disease remains unclear. However, the accumulation of bile acids (BAs) undoubtedly plays a role. Recent progress in deciphering the pathomechanisms of inborn cholestatic liver diseases, decoding mechanisms of BA-induced cell death, and generating modern BA-derived drugs has improved the understanding of the regulation of BA synthesis and transport. Now is the appropriate time to reassess current knowledge about the specific role of BAs in hepatobiliary injury.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Hepatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Boyer J.L.
        Bile formation and secretion.
        Compr Physiol. 2013; 3: 1035-1078
        • Russell D.W.
        The enzymes, regulation, and genetics of bile acid synthesis.
        Annu Rev Biochem. 2003; 72: 137-174
        • Norlin M.
        • Wikvall K.
        Enzymes in the conversion of cholesterol into bile acids.
        Curr Mol Med. 2007; 7: 199-218
        • Hofmann A.F.
        • Hagey L.R.
        • Krasowski M.D.
        Bile salts of vertebrates: structural variation and possible evolutionary significance.
        J Lipid Res. 2010; 51: 226-246
        • Potthoff M.J.
        • Kliewer S.A.
        • Mangelsdorf D.J.
        Endocrine fibroblast growth factors 15/19 and 21: from feast to famine.
        Genes Dev. 2012; 26: 312-324
        • Wahlstrom A.
        • Sayin S.I.
        • Marschall H.U.
        • Backhed F.
        Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism.
        Cell Metab. 2016; 24: 41-50
        • Beuers U.
        • Trauner M.
        • Jansen P.
        • Poupon R.
        New paradigms in the treatment of hepatic cholestasis: from UDCA to FXR, PXR and beyond.
        J Hepatol. 2015; 62: S25-S37
        • Nevens F.
        • Andreone P.
        • Mazzella G.
        • Strasser S.I.
        • Bowlus C.
        • Invernizzi P.
        • et al.
        A placebo-controlled trial of obeticholic acid in primary biliary cholangitis.
        N Engl J Med. 2016; 375: 631-643
        • Paumgartner G.
        • Beuers U.
        Ursodeoxycholic acid in cholestatic liver disease: mechanisms of action and therapeutic use revisited.
        Hepatology. 2002; 36: 525-531
        • Lazaridis K.N.
        • LaRusso N.F.
        The cholangiopathies.
        Mayo Clin Proc. 2015; 90: 791-800
        • Faubion W.A.
        • Guicciardi M.E.
        • Miyoshi H.
        • Bronk S.F.
        • Roberts P.J.
        • Svingen P.A.
        • et al.
        Toxic bile salts induce rodent hepatocyte apoptosis via direct activation of Fas.
        J Clin Invest. 1999; 103: 137-145
        • Guicciardi M.E.
        • Malhi H.
        • Mott J.L.
        • Gores G.J.
        Apoptosis and necrosis in the liver.
        Compr Physiol. 2013; 3: 977-1010
        • Woolbright B.L.
        • Jaeschke H.
        Novel insight into mechanisms of cholestatic liver injury.
        World J Gastroenterol. 2012; 18: 4985-4993
        • Woolbright B.L.
        • Dorko K.
        • Antoine D.J.
        • Clarke J.I.
        • Gholami P.
        • Li F.
        • et al.
        Bile acid-induced necrosis in primary human hepatocytes and in patients with obstructive cholestasis.
        Toxicol Appl Pharmacol. 2015; 283: 168-177
        • Fickert P.
        • Zollner G.
        • Fuchsbichler A.
        • Stumptner C.
        • Weiglein A.H.
        • Lammert F.
        • et al.
        Ursodeoxycholic acid aggravates bile infarcts in bile duct-ligated and Mdr2 knockout mice via disruption of cholangioles.
        Gastroenterology. 2002; 123: 1238-1251
        • Fickert P.
        • Trauner M.
        • Fuchsbichler A.
        • Zollner G.
        • Wagner M.
        • Marschall H.U.
        • et al.
        Oncosis represents the main type of cell death in mouse models of cholestasis.
        J Hepatol. 2005; 42: 378-385
        • Fickert P.
        • Fuchsbichler A.
        • Marschall H.U.
        • Wagner M.
        • Zollner G.
        • Krause R.
        • et al.
        Lithocholic acid feeding induces segmental bile duct obstruction and destructive cholangitis in mice.
        Am J Pathol. 2006; 168: 410-422
        • Malhi H.
        • Guicciardi M.E.
        • Gores G.J.
        Hepatocyte death: a clear and present danger.
        Physiol Rev. 2010; 90: 1165-1194
        • Nakanuma Y.
        • Sasaki M.
        • Harada K.
        Autophagy and senescence in fibrosing cholangiopathies.
        J Hepatol. 2015; 62: 934-945
        • Meng L.
        • Quezada M.
        • Levine P.
        • Han Y.
        • McDaniel K.
        • Zhou T.
        • et al.
        Functional role of cellular senescence in biliary injury.
        Am J Pathol. 2015; 185: 602-609
        • Tabibian J.H.
        • O'Hara S.P.
        • Splinter P.L.
        • Trussoni C.E.
        • LaRusso N.F.
        Cholangiocyte senescence by way of N-ras activation is a characteristic of primary sclerosing cholangitis.
        Hepatology. 2014; 59: 2263-2275
        • Halilbasic E.
        • Fuchs C.
        • Traussnigg S.
        • Trauner M.
        Farnesoid X receptor agonists and other bile acid signaling strategies for treatment of liver disease.
        Dig Dis. 2016; 34: 580-588
        • Smit J.J.
        • Schinkel A.H.
        • Oude Elferink R.P.
        • Groen A.K.
        • Wagenaar E.
        • van Deemter L.
        • et al.
        Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease.
        Cell. 1993; 75: 451-462
        • Trivedi P.J.
        • Adams D.H.
        Mucosal immunity in liver autoimmunity: a comprehensive review.
        J Autoimmun. 2013; 46: 97-111
        • Shuai Z.
        • Leung M.W.
        • He X.
        • Zhang W.
        • Yang G.
        • Leung P.S.
        • et al.
        Adaptive immunity in the liver.
        Cell Mol Immunol. 2016; 13: 354-368
        • Webb G.J.
        • Siminovitch K.A.
        • Hirschfield G.M.
        The immunogenetics of primary biliary cirrhosis: A comprehensive review.
        J Autoimmun. 2015; 64: 42-52
        • Trivedi P.J.
        • Hirschfield G.M.
        The immunogenetics of autoimmune cholestasis.
        Clin Liver Dis. 2016; 20: 15-31
        • Grant A.J.
        • Lalor P.F.
        • Salmi M.
        • Jalkanen S.
        • Adams D.H.
        Homing of mucosal lymphocytes to the liver in the pathogenesis of hepatic complications of inflammatory bowel disease.
        Lancet. 2002; 359: 150-157
        • Rao R.K.
        • Samak G.
        Bile duct epithelial tight junctions and barrier function.
        Tissue Barriers. 2013; 1: e25718
        • Pollheimer M.J.
        • Fickert P.
        • Stieger B.
        Chronic cholestatic liver diseases: clues from histopathology for pathogenesis.
        Mol Aspects Med. 2014; 37: 35-56
        • Hofmann A.F.
        • Hagey L.R.
        Key discoveries in bile acid chemistry and biology and their clinical applications: history of the last eight decades.
        J Lipid Res. 2014; 55: 1553-1595
        • Hofmann A.F.
        Bile acids: trying to understand their chemistry and biology with the hope of helping patients.
        Hepatology. 2009; 49: 1403-1418
        • Hofmann A.F.
        • Hagey L.R.
        Bile acids: chemistry, pathochemistry, biology, pathobiology, and therapeutics.
        Cell Mol Life Sci. 2008; 65: 2461-2483
        • Ferrebee C.B.
        • Dawson P.A.
        Metabolic effects of intestinal absorption and enterohepatic cycling of bile acids.
        Acta Pharm Sin B. 2015; 5: 129-134
        • Calkin A.C.
        • Tontonoz P.
        Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR.
        Nat Rev Mol Cell Biol. 2012; 13: 213-224
        • Hofmann A.F.
        • Roda A.
        Physicochemical properties of bile acids and their relationship to biological properties: an overview of the problem.
        J Lipid Res. 1984; 25: 1477-1489
        • Hofmann A.F.
        Detoxification of lithocholic acid, a toxic bile acid: relevance to drug hepatotoxicity.
        Drug Metab Rev. 2004; 36: 703-722
        • Jacquemin E.
        Progressive familial intrahepatic cholestasis.
        Clin Res Hepatol Gastroenterol. 2012; 36: S26-S35
        • Paulusma C.C.
        • Elferink R.P.
        • Jansen P.L.
        Progressive familial intrahepatic cholestasis type 1.
        Semin Liver Dis. 2010; 30: 117-124
        • Hartley J.L.
        • Gissen P.
        • Kelly D.A.
        Alagille syndrome and other hereditary causes of cholestasis.
        Clin Liver Dis. 2013; 17: 279-300
        • Hirschfield G.M.
        Genetic determinants of cholestasis.
        Clin Liver Dis. 2013; 17: 147-159
        • Morotti R.A.
        • Suchy F.J.
        • Magid M.S.
        Progressive familial intrahepatic cholestasis (PFIC) type 1, 2, and 3: a review of the liver pathology findings.
        Semin Liver Dis. 2011; 31: 3-10
        • Vaz F.M.
        • Paulusma C.C.
        • Huidekoper H.
        • de Ru M.
        • Lim C.
        • Koster J.
        • et al.
        Sodium taurocholate cotransporting polypeptide (SLC10A1) deficiency: conjugated hypercholanemia without a clear clinical phenotype.
        Hepatology. 2015; 61: 260-267
        • Scheimann A.O.
        • Strautnieks S.S.
        • Knisely A.S.
        • Byrne J.A.
        • Thompson R.J.
        • Finegold M.J.
        Mutations in bile salt export pump (ABCB11) in two children with progressive familial intrahepatic cholestasis and cholangiocarcinoma.
        J Pediatr. 2007; 150: 556-559
        • Strautnieks S.S.
        • Byrne J.A.
        • Pawlikowska L.
        • Cebecauerova D.
        • Rayner A.
        • Dutton L.
        • et al.
        Severe bile salt export pump deficiency: 82 different ABCB11 mutations in 109 families.
        Gastroenterology. 2008; 134: 1203-1214
        • Gomez-Ospina N.
        • Potter C.J.
        • Xiao R.
        • Manickam K.
        • Kim M.S.
        • Kim K.H.
        • et al.
        Mutations in the nuclear bile acid receptor FXR cause progressive familial intrahepatic cholestasis.
        Nat Commun. 2016; 7: 10713
        • Oude Elferink R.P.
        • Paulusma C.C.
        • Groen A.K.
        Hepatocanalicular transport defects: pathophysiologic mechanisms of rare diseases.
        Gastroenterology. 2006; 130: 908-925
        • Jacquemin E.
        • De Vree J.M.
        • Cresteil D.
        • Sokal E.M.
        • Sturm E.
        • Dumont M.
        • et al.
        The wide spectrum of multidrug resistance 3 deficiency: from neonatal cholestasis to cirrhosis of adulthood.
        Gastroenterology. 2001; 120: 1448-1458
        • Setchell K.D.
        • Heubi J.E.
        • Shah S.
        • Lavine J.E.
        • Suskind D.
        • Al-Edreesi M.
        • Potter C.
        • et al.
        Genetic defects in bile acid conjugation cause fat-soluble vitamin deficiency.
        Gastroenterology. 2013; 144 (Quiz e914–e945): 945-955
        • Zollner G.
        • Fickert P.
        • Silbert D.
        • Fuchsbichler A.
        • Marschall H.U.
        • Zatloukal K.
        • et al.
        Adaptive changes in hepatobiliary transporter expression in primary biliary cirrhosis.
        J Hepatol. 2003; 38: 717-727
        • Zollner G.
        • Fickert P.
        • Zenz R.
        • Fuchsbichler A.
        • Stumptner C.
        • Kenner L.
        • et al.
        Hepatobiliary transporter expression in percutaneous liver biopsies of patients with cholestatic liver diseases.
        Hepatology. 2001; 33: 633-646
        • Jara P.
        • Hierro L.
        • Martinez-Fernandez P.
        • Alvarez-Doforno R.
        • Yanez F.
        • Diaz M.C.
        • et al.
        Recurrence of bile salt export pump deficiency after liver transplantation.
        N Engl J Med. 2009; 361: 1359-1367
        • Siebold L.
        • Dick A.A.
        • Thompson R.
        • Maggiore G.
        • Jacquemin E.
        • Jaffe R.
        • et al.
        Recurrent low gamma-glutamyl transpeptidase cholestasis following liver transplantation for bile salt export pump (BSEP) disease (posttransplant recurrent BSEP disease).
        Liver Transpl. 2010; 16: 856-863
        • Keitel V.
        • Burdelski M.
        • Vojnisek Z.
        • Schmitt L.
        • Haussinger D.
        • Kubitz R.
        De novo bile salt transporter antibodies as a possible cause of recurrent graft failure after liver transplantation: a novel mechanism of cholestasis.
        Hepatology. 2009; 50: 510-517
        • Kubitz R.
        • Droge C.
        • Kluge S.
        • Stross C.
        • Walter N.
        • Keitel V.
        • et al.
        Autoimmune BSEP disease: disease recurrence after liver transplantation for progressive familial intrahepatic cholestasis.
        Clin Rev Allergy Immunol. 2015; 48: 273-284
        • Duane W.C.
        The intermicellar bile salt concentration in equilibrium with the mixed-micelles of human bile.
        Biochim Biophys Acta. 1975; 398: 275-286
        • Ye L.
        • Liu S.
        • Wang M.
        • Shao Y.
        • Ding M.
        High-performance liquid chromatography-tandem mass spectrometry for the analysis of bile acid profiles in serum of women with intrahepatic cholestasis of pregnancy.
        J Chromatogr B Analyt Technol Biomed Life Sci. 2007; 860: 10-17
      1. Hofmann AF. Enterohepatic Circulation of Bile Acids. Compr Physiol 2011, Supplement 18: Handbook of Physiology, The Gastrointestinal System, Salivary, Gastric, Pancreatic, and Hepatobiliary Secretion: 567-596. First published in print 1989. 2011.

        • Trottier J.
        • Bialek A.
        • Caron P.
        • Straka R.J.
        • Milkiewicz P.
        • Barbier O.
        Profiling circulating and urinary bile acids in patients with biliary obstruction before and after biliary stenting.
        PLoS One. 2011; 6: e22094
        • Kakiyama G.
        • Pandak W.M.
        • Gillevet P.M.
        • Hylemon P.B.
        • Heuman D.M.
        • Daita K.
        • et al.
        Modulation of the fecal bile acid profile by gut microbiota in cirrhosis.
        J Hepatol. 2013; 58: 949-955
        • Fischer S.
        • Beuers U.
        • Spengler U.
        • Zwiebel F.M.
        • Koebe H.G.
        Hepatic levels of bile acids in end-stage chronic cholestatic liver disease.
        Clin Chim Acta. 1996; 251: 173-186
        • Setchell K.D.
        • Rodrigues C.M.
        • Clerici C.
        • Solinas A.
        • Morelli A.
        • Gartung C.
        • et al.
        Bile acid concentrations in human and rat liver tissue and in hepatocyte nuclei.
        Gastroenterology. 1997; 112: 226-235
        • Aranha M.M.
        • Cortez-Pinto H.
        • Costa A.
        • da Silva I.B.
        • Camilo M.E.
        • de Moura M.C.
        • et al.
        Bile acid levels are increased in the liver of patients with steatohepatitis.
        Eur J Gastroenterol Hepatol. 2008; 20: 519-525
        • Gauss A.
        • Ehehalt R.
        • Lehmann W.D.
        • Erben G.
        • Weiss K.H.
        • Schaefer Y.
        • et al.
        Biliary phosphatidylcholine and lysophosphatidylcholine profiles in sclerosing cholangitis.
        World J Gastroenterol. 2013; 19: 5454-5463
        • Dilger K.
        • Hohenester S.
        • Winkler-Budenhofer U.
        • Bastiaansen B.A.
        • Schaap F.G.
        • Rust C.
        • et al.
        Effect of ursodeoxycholic acid on bile acid profiles and intestinal detoxification machinery in primary biliary cirrhosis and health.
        J Hepatol. 2012; 57: 133-140
        • Kurumiya Y.
        • Nagino M.
        • Nozawa K.
        • Kamiya J.
        • Uesaka K.
        • Sano T.
        • et al.
        Biliary bile acid concentration is a simple and reliable indicator for liver function after hepatobiliary resection for biliary cancer.
        Surgery. 2003; 133: 512-520
        • Zweers S.J.
        • Shiryaev A.
        • Komuta M.
        • Vesterhus M.
        • Hov J.R.
        • Perugorria M.J.
        • et al.
        Elevated interleukin-8 in bile of patients with primary sclerosing cholangitis.
        Liver Int. 2016; 36: 1370-1377
        • Hohenester S.
        • Wenniger L.M.
        • Paulusma C.C.
        • van Vliet S.J.
        • Jefferson D.M.
        • Elferink R.P.
        • et al.
        A biliary HCO3- umbrella constitutes a protective mechanism against bile acid-induced injury in human cholangiocytes.
        Hepatology. 2012; 55: 173-183
        • Slijepcevic D.
        • Kaufman C.
        • Wichers C.G.
        • Gilglioni E.H.
        • Lempp F.A.
        • Duijst S.
        • et al.
        Impaired uptake of conjugated bile acids and hepatitis b virus pres1-binding in na(+) -taurocholate cotransporting polypeptide knockout mice.
        Hepatology. 2015; 62: 207-219
        • Fickert P.
        • Zollner G.
        • Fuchsbichler A.
        • Stumptner C.
        • Pojer C.
        • Zenz R.
        • et al.
        Effects of ursodeoxycholic and cholic acid feeding on hepatocellular transporter expression in mouse liver.
        Gastroenterology. 2001; 121: 170-183
        • Shah S.
        • Sanford U.R.
        • Vargas J.C.
        • Xu H.
        • Groen A.
        • Paulusma C.C.
        • et al.
        Strain background modifies phenotypes in the ATP8B1-deficient mouse.
        PLoS One. 2010; 5: e8984
        • Gujral J.S.
        • Liu J.
        • Farhood A.
        • Jaeschke H.
        Reduced oncotic necrosis in Fas receptor-deficient C57BL/6J-lpr mice after bile duct ligation.
        Hepatology. 2004; 40: 998-1007
        • Ikenaga N.
        • Liu S.B.
        • Sverdlov D.Y.
        • Yoshida S.
        • Nasser I.
        • Ke Q.
        • et al.
        A new Mdr2(−/−) mouse model of sclerosing cholangitis with rapid fibrosis progression, early-onset portal hypertension, and liver cancer.
        Am J Pathol. 2015; 185: 325-334
        • Alaish S.M.
        • Smith A.D.
        • Timmons J.
        • Greenspon J.
        • Eyvazzadeh D.
        • Murphy E.
        • et al.
        Gut microbiota, tight junction protein expression, intestinal resistance, bacterial translocation and mortality following cholestasis depend on the genetic background of the host.
        Gut Microbes. 2013; 4: 292-305
        • Delzenne N.M.
        • Calderon P.B.
        • Taper H.S.
        • Roberfroid M.B.
        Comparative hepatotoxicity of cholic acid, deoxycholic acid and lithocholic acid in the rat: in vivo and in vitro studies.
        Toxicol Lett. 1992; 61: 291-304
        • Sinal C.J.
        • Tohkin M.
        • Miyata M.
        • Ward J.M.
        • Lambert G.
        • Gonzalez F.J.
        Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis.
        Cell. 2000; 102: 731-744
        • Woolbright B.L.
        • Li F.
        • Xie Y.
        • Farhood A.
        • Fickert P.
        • Trauner M.
        • et al.
        Lithocholic acid feeding results in direct hepato-toxicity independent of neutrophil function in mice.
        Toxicol Lett. 2014; 228: 56-66
        • Van Nieuwkerk C.M.
        • Elferink R.P.
        • Groen A.K.
        • Ottenhoff R.
        • Tytgat G.N.
        • Dingemans K.P.
        • et al.
        Effects of Ursodeoxycholate and cholate feeding on liver disease in FVB mice with a disrupted mdr2 P-glycoprotein gene.
        Gastroenterology. 1996; 111: 165-171
        • Paulusma C.C.
        • Groen A.
        • Kunne C.
        • Ho-Mok K.S.
        • Spijkerboer A.L.
        • Rudi de Waart D.
        • et al.
        Atp8b1 deficiency in mice reduces resistance of the canalicular membrane to hydrophobic bile salts and impairs bile salt transport.
        Hepatology. 2006; 44: 195-204
        • Fickert P.
        • Fuchsbichler A.
        • Wagner M.
        • Zollner G.
        • Kaser A.
        • Tilg H.
        • et al.
        Regurgitation of bile acids from leaky bile ducts causes sclerosing cholangitis in Mdr2 (Abcb4) knockout mice.
        Gastroenterology. 2004; 127: 261-274
        • Fickert P.
        • Wagner M.
        • Marschall H.U.
        • Fuchsbichler A.
        • Zollner G.
        • Tsybrovskyy O.
        • et al.
        24-norUrsodeoxycholic acid is superior to ursodeoxycholic acid in the treatment of sclerosing cholangitis in Mdr2 (Abcb4) knockout mice.
        Gastroenterology. 2006; 130: 465-481
        • Miethke A.G.
        • Zhang W.
        • Simmons J.
        • Taylor A.E.
        • Shi T.
        • Shanmukhappa S.K.
        • et al.
        Pharmacological inhibition of apical sodium-dependent bile acid transporter changes bile composition and blocks progression of sclerosing cholangitis in multidrug resistance 2 knockout mice.
        Hepatology. 2016; 63: 512-523
        • Baghdasaryan A.
        • Fuchs C.D.
        • Osterreicher C.H.
        • Lemberger U.J.
        • Halilbasic E.
        • Pahlman I.
        • et al.
        Inhibition of intestinal bile acid absorption improves cholestatic liver and bile duct injury in a mouse model of sclerosing cholangitis.
        J Hepatol. 2016; 64: 674-681
        • Cai S.Y.
        • Mennone A.
        • Soroka C.J.
        • Boyer J.L.
        All-trans-retinoic acid improves cholestasis in alpha-naphthylisothiocyanate-treated rats and Mdr2-/- mice.
        J Pharmacol Exp Ther. 2014; 349: 94-98
        • Zhou M.
        • Learned R.M.
        • Rossi S.J.
        • DePaoli A.M.
        • Tian H.
        • Ling L.
        Engineered fibroblast growth factor 19 reduces liver injury and resolves sclerosing cholangitis in Mdr2-deficient mice.
        Hepatology. 2016; 63: 914-929
        • Fickert P.
        • Moustafa T.
        • Trauner M.
        Primary sclerosing cholangitis–the arteriosclerosis of the bile duct?.
        Lipids Health Dis. 2007; 6: 3
        • Wang R.
        • Salem M.
        • Yousef I.M.
        • Tuchweber B.
        • Lam P.
        • Childs S.J.
        • et al.
        Targeted inactivation of sister of P-glycoprotein gene (spgp) in mice results in nonprogressive but persistent intrahepatic cholestasis.
        Proc Natl Acad Sci U S A. 2001; 98: 2011-2016
        • Wang R.
        • Lam P.
        • Liu L.
        • Forrest D.
        • Yousef I.M.
        • Mignault D.
        • et al.
        Severe cholestasis induced by cholic acid feeding in knockout mice of sister of P-glycoprotein.
        Hepatology. 2003; 38: 1489-1499
        • Wang R.
        • Chen H.L.
        • Liu L.
        • Sheps J.A.
        • Phillips M.J.
        • Ling V.
        Compensatory role of P-glycoproteins in knockout mice lacking the bile salt export pump.
        Hepatology. 2009; 50: 948-956
        • Fuchs C.D.
        • Paumgartner G.
        • Wahlstrom A.
        • Schwabl P.
        • Reiberger T.
        • Leditznig N.
        • et al.
        Metabolic preconditioning protects BSEP/ABCB11−/− mice against cholestatic liver injury.
        J Hepatol. 2017; 66: 95-101
        • Nakagawa H.
        • Hikiba Y.
        • Hirata Y.
        • Font-Burgada J.
        • Sakamoto K.
        • Hayakawa Y.
        • et al.
        Loss of liver E-cadherin induces sclerosing cholangitis and promotes carcinogenesis.
        Proc Natl Acad Sci U S A. 2014; 111: 1090-1095
        • Yeh T.H.
        • Krauland L.
        • Singh V.
        • Zou B.
        • Devaraj P.
        • Stolz D.B.
        • et al.
        Liver-specific beta-catenin knockout mice have bile canalicular abnormalities, bile secretory defect, and intrahepatic cholestasis.
        Hepatology. 2010; 52: 1410-1419
        • Herr K.J.
        • Tsang Y.H.
        • Ong J.W.
        • Li Q.
        • Yap L.L.
        • Yu W.
        • et al.
        Loss of alpha-catenin elicits a cholestatic response and impairs liver regeneration.
        Sci Rep. 2014; 4: 6835
        • Matsumoto K.
        • Imasato M.
        • Yamazaki Y.
        • Tanaka H.
        • Watanabe M.
        • Eguchi H.
        • et al.
        Claudin 2 deficiency reduces bile flow and increases susceptibility to cholesterol gallstone disease in mice.
        Gastroenterology. 2014; 147: e1110
        • Tanimizu N.
        • Mitaka T.
        Role of grainyhead-like 2 in the formation of functional tight junctions.
        Tissue Barriers. 2013; 1: e23495
        • Spivey J.R.
        • Bronk S.F.
        • Gores G.J.
        Glycochenodeoxycholate-induced lethal hepatocellular injury in rat hepatocytes. Role of ATP depletion and cytosolic free calcium.
        J Clin Invest. 1993; 92: 17-24
        • Patel T.
        • Bronk S.F.
        • Gores G.J.
        Increases of intracellular magnesium promote glycodeoxycholate-induced apoptosis in rat hepatocytes.
        J Clin Invest. 1994; 94: 2183-2192
        • Jaeschke H.
        • Gores G.J.
        • Cederbaum A.I.
        • Hinson J.A.
        • Pessayre D.
        • Lemasters J.J.
        Mechanisms of hepatotoxicity.
        Toxicol Sci. 2002; 65: 166-176
        • Rust C.
        • Wild N.
        • Bernt C.
        • Vennegeerts T.
        • Wimmer R.
        • Beuers U.
        Bile acid-induced apoptosis in hepatocytes is caspase-6-dependent.
        J Biol Chem. 2009; 284: 2908-2916
        • Benedetti A.
        • Alvaro D.
        • Bassotti C.
        • Gigliozzi A.
        • Ferretti G.
        • La Rosa T.
        • et al.
        Cytotoxicity of bile salts against biliary epithelium: a study in isolated bile ductule fragments and isolated perfused rat liver.
        Hepatology. 1997; 26: 9-21
        • Drudi Metalli V.
        • Mancino M.G.
        • Mancino A.
        • Torrice A.
        • Gatto M.
        • Attili A.F.
        • et al.
        Bile salts regulate proliferation and apoptosis of liver cells by modulating the IGF1 system.
        Dig Liver Dis. 2007; 39: 654-662
        • Tabibian J.H.
        • Lindor K.D.
        Ursodeoxycholic acid in primary sclerosing cholangitis: if withdrawal is bad, then administration is good (right?).
        Hepatology. 2014; 60: 785-788
        • Rodrigues C.M.
        • Ma X.
        • Linehan-Stieers C.
        • Fan G.
        • Kren B.T.
        • Steer C.J.
        Ursodeoxycholic acid prevents cytochrome c release in apoptosis by inhibiting mitochondrial membrane depolarization and channel formation.
        Cell Death Differ. 1999; 6: 842-854
        • Webster C.R.
        • Usechak P.
        • Anwer M.S.
        CAMP inhibits bile acid-induced apoptosis by blocking caspase activation and cytochrome c release.
        Am J Physiol Gastrointest Liver Physiol. 2002; 283: G727-G738
        • Gujral J.S.
        • Farhood A.
        • Bajt M.L.
        • Jaeschke H.
        Neutrophils aggravate acute liver injury during obstructive cholestasis in bile duct-ligated mice.
        Hepatology. 2003; 38: 355-363
        • Gujral J.S.
        • Liu J.
        • Farhood A.
        • Hinson J.A.
        • Jaeschke H.
        Functional importance of ICAM-1 in the mechanism of neutrophil-induced liver injury in bile duct-ligated mice.
        Am J Physiol Gastrointest Liver Physiol. 2004; 286: G499-G507
        • Yang M.
        • Ramachandran A.
        • Yan H.M.
        • Woolbright B.L.
        • Copple B.L.
        • Fickert P.
        • et al.
        Osteopontin is an initial mediator of inflammation and liver injury during obstructive cholestasis after bile duct ligation in mice.
        Toxicol Lett. 2014; 224: 186-195
        • Allen K.
        • Jaeschke H.
        • Copple B.L.
        Bile acids induce inflammatory genes in hepatocytes: a novel mechanism of inflammation during obstructive cholestasis.
        Am J Pathol. 2011; 178: 175-186
        • Lou G.
        • Ma X.
        • Fu X.
        • Meng Z.
        • Zhang W.
        • Wang Y.D.
        • et al.
        GPBAR1/TGR5 mediates bile acid-induced cytokine expression in murine Kupffer cells.
        PLoS One. 2014; 9: e93567
        • Miyake J.H.
        • Wang S.L.
        • Davis R.A.
        Bile acid induction of cytokine expression by macrophages correlates with repression of hepatic cholesterol 7alpha-hydroxylase.
        J Biol Chem. 2000; 275: 21805-21808
        • Carey M.
        Physcio-chemical properties of bile acids and their salts.
        in: Danielsson H. Sjövall Steros and Bile Acids. Elsevier, Amsterdam1985: 345-403
        • Puglielli L.
        • Amigo L.
        • Arrese M.
        • Nunez L.
        • Rigotti A.
        • Garrido J.
        • et al.
        Protective role of biliary cholesterol and phospholipid lamellae against bile acid-induced cell damage.
        Gastroenterology. 1994; 107: 244-254
        • Beuers U.
        • Hohenester S.
        • de Buy Wenniger L.J.
        • Kremer A.E.
        • Jansen P.L.
        • Elferink R.P.
        The biliary HCO(3)(−) umbrella: a unifying hypothesis on pathogenetic and therapeutic aspects of fibrosing cholangiopathies.
        Hepatology. 2010; 52: 1489-1496
        • Beuers U.
        • Maroni L.
        • Elferink R.O.
        The biliary HCO(3)(−) umbrella: experimental evidence revisited.
        Curr Opin Gastroenterol. 2012; 28: 253-257
        • Chang J.C.
        • Go S.
        • de Waart D.R.
        • Munoz-Garrido P.
        • Beuers U.
        • Paulusma C.C.
        • et al.
        Soluble adenylyl cyclase regulates bile salt-induced apoptosis in human cholangiocytes.
        Hepatology. 2016; 64: 522-534
        • Salas J.T.
        • Banales J.M.
        • Sarvide S.
        • Recalde S.
        • Ferrer A.
        • Uriarte I.
        • et al.
        Ae2a, b-deficient mice develop antimitochondrial antibodies and other features resembling primary biliary cirrhosis.
        Gastroenterology. 2008; 134: 1482-1493
        • Harada K.
        • Ozaki S.
        • Gershwin M.E.
        • Nakanuma Y.
        Enhanced apoptosis relates to bile duct loss in primary biliary cirrhosis.
        Hepatology. 1997; 26: 1399-1405
        • Iwata M.
        • Harada K.
        • Hiramatsu K.
        • Tsuneyama K.
        • Kaneko S.
        • Kobayashi K.
        • et al.
        Fas ligand expressing mononuclear cells around intrahepatic bile ducts co-express CD68 in primary biliary cirrhosis.
        Liver. 2000; 20: 129-135
        • Koga H.
        • Sakisaka S.
        • Ohishi M.
        • Sata M.
        • Tanikawa K.
        Nuclear DNA fragmentation and expression of Bcl-2 in primary biliary cirrhosis.
        Hepatology. 1997; 25: 1077-1084
        • Masuoka H.C.
        • Vuppalanchi R.
        • Deppe R.
        • Bybee P.
        • Comerford M.
        • Liangpunsakul S.
        • et al.
        Individuals with primary sclerosing cholangitis have elevated levels of biomarkers for apoptosis but not necrosis.
        Dig Dis Sci. 2015; 60: 3642-3646
        • Khan Z.
        • Yokota S.
        • Ono Y.
        • Bell A.W.
        • Oertel M.
        • Stolz D.B.
        • et al.
        Bile duct ligation induces Atz globule clearance in a mouse model of alpha-1 antitrypsin deficiency.
        Gene Expr. 2017; 17: 115-127
        • Sasaki M.
        • Nakanuma Y.
        Biliary epithelial apoptosis, autophagy, and senescence in primary biliary cirrhosis.
        Hepat Res Treat. 2010; 2010: 205128
        • Lee J.M.
        • Wagner M.
        • Xiao R.
        • Kim K.H.
        • Feng D.
        • Lazar M.A.
        • et al.
        Nutrient-sensing nuclear receptors coordinate autophagy.
        Nature. 2014; 516: 112-115
        • Sasaki M.
        • Miyakoshi M.
        • Sato Y.
        • Nakanuma Y.
        Autophagy mediates the process of cellular senescence characterizing bile duct damages in primary biliary cirrhosis.
        Lab Invest. 2010; 90: 835-843
        • Canbay A.
        • Taimr P.
        • Torok N.
        • Higuchi H.
        • Friedman S.
        • Gores G.J.
        Apoptotic body engulfment by a human stellate cell line is profibrogenic.
        Lab Invest. 2003; 83: 655-663
        • Wu N.
        • Meng F.
        • Invernizzi P.
        • Bernuzzi F.
        • Venter J.
        • Standeford H.
        • et al.
        The secretin/secretin receptor axis modulates liver fibrosis through changes in transforming growth factor-β1 biliary secretion in mice.
        Hepatology. 2016; 64: 865-879
        • Friedman S.L.
        Hepatic fibrosis – overview.
        Toxicology. 2008; 254: 120-129
        • Mann D.A.
        • Smart D.E.
        Transcriptional regulation of hepatic stellate cell activation.
        Gut. 2002; 50: 891-896
        • Fiorucci S.
        • Antonelli E.
        • Rizzo G.
        • Renga B.
        • Mencarelli A.
        • Riccardi L.
        • et al.
        The nuclear receptor SHP mediates inhibition of hepatic stellate cells by FXR and protects against liver fibrosis.
        Gastroenterology. 2004; 127: 1497-1512
        • Fiorucci S.
        • Rizzo G.
        • Antonelli E.
        • Renga B.
        • Mencarelli A.
        • Riccardi L.
        • et al.
        Cross-talk between farnesoid-X-receptor (FXR) and peroxisome proliferator-activated receptor gamma contributes to the antifibrotic activity of FXR ligands in rodent models of liver cirrhosis.
        J Pharmacol Exp Ther. 2005; 315: 58-68
        • Fiorucci S.
        • Rizzo G.
        • Antonelli E.
        • Renga B.
        • Mencarelli A.
        • Riccardi L.
        • et al.
        A farnesoid x receptor-small heterodimer partner regulatory cascade modulates tissue metalloproteinase inhibitor-1 and matrix metalloprotease expression in hepatic stellate cells and promotes resolution of liver fibrosis.
        J Pharmacol Exp Ther. 2005; 314: 584-595
        • Fickert P.
        • Fuchsbichler A.
        • Moustafa T.
        • Wagner M.
        • Zollner G.
        • Halilbasic E.
        • et al.
        Farnesoid X receptor critically determines the fibrotic response in mice but is expressed to a low extent in human hepatic stellate cells and periductal myofibroblasts.
        Am J Pathol. 2009; 175: 2392-2405
        • Verbeke L.
        • Mannaerts I.
        • Schierwagen R.
        • Govaere O.
        • Klein S.
        • Vander Elst I.
        • et al.
        FXR agonist obeticholic acid reduces hepatic inflammation and fibrosis in a rat model of toxic cirrhosis.
        Sci Rep. 2016; 6: 33453
        • Verbeke L.
        • Farre R.
        • Trebicka J.
        • Komuta M.
        • Roskams T.
        • Klein S.
        • et al.
        Obeticholic acid, a farnesoid X receptor agonist, improves portal hypertension by two distinct pathways in cirrhotic rats.
        Hepatology. 2014; 59: 2286-2298
        • Calmus Y.
        • Poupon R.
        Shaping macrophages function and innate immunity by bile acids: mechanisms and implication in cholestatic liver diseases.
        Clin Res Hepatol Gastroenterol. 2014; 38: 550-556
      2. Hofmann AF. Enterohepatic Circulation of Bile Acids. Compr Physiol 2011, Supplement 18: Handbook of Physiology, The Gastrointestinal System, Salivary, Gastric, Pancreatic, and Hepatobiliary Secretion: 567–596. First published in print 1989.

        • Marschall H.U.
        • Wagner M.
        • Bodin K.
        • Zollner G.
        • Fickert P.
        • Gumhold J.
        • et al.
        Fxr(−/−) mice adapt to biliary obstruction by enhanced phase I detoxification and renal elimination of bile acids.
        J Lipid Res. 2006; 47: 582-592