Advertisement

Alterations of the nuclear transport system in hepatocellular carcinoma – New basis for therapeutic strategies

      Summary

      Hepatocellular carcinoma (HCC) is among the most prevalent human malignancies worldwide with rising incidence in industrialised countries, few therapeutic options and poor prognosis. To expand and improve therapeutic strategies, identification of drug targets involved in several liver cancer-related pathways is crucial. Virtually all signal transduction cascades cross the nuclear envelope and therefore require components of the nuclear transport system (NTS), including nuclear transport receptors (e.g. importins and exportins) and the nuclear pore complex. Accordingly, members of the NTS represent promising targets for therapeutic intervention. Selective inhibitors of nuclear export have already entered clinical trials for various malignancies. Herein, we review the current knowledge regarding alterations of the NTS and their potential for targeted therapy in HCC.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Hepatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Llovet J.M.
        • Villanueva A.
        • Lachenmayer A.
        • Finn R.S.
        Advances in targeted therapies for hepatocellular carcinoma in the genomic era.
        Nat Rev Clin Oncol. 2015; 12: 408-424
        • El-Serag H.B.
        • Kanwal F.
        Epidemiology of hepatocellular carcinoma in the United States: where are we? Where do we go?.
        Hepatology. 2014; 60: 1767-1775
        • Llovet J.M.
        • Ricci S.
        • Mazzaferro V.
        • Hilgard P.
        • Gane E.
        • Blanc J.F.
        • et al.
        Sorafenib in advanced hepatocellular carcinoma.
        N Engl J Med. 2008; 359: 378-390
        • Bruix J.
        • Reig M.
        • Sherman M.
        Evidence-Based Diagnosis, Staging, and Treatment of Patients With Hepatocellular Carcinoma.
        Gastroenterology. 2016; 150: 835-853
        • Schulze K.
        • Imbeaud S.
        • Letouze E.
        • Alexandrov L.B.
        • Calderaro J.
        • Rebouissou S.
        • et al.
        Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets.
        Nat Genet. 2015; 47: 505-511
        • Beck M.
        • Hurt E.
        The nuclear pore complex: understanding its function through structural insight.
        Nat Rev Mol Cell Biol. 2017; 18: 73-89
        • Kosinski J.
        • Mosalaganti S.
        • von Appen A.
        • Teimer R.
        • DiGuilio A.L.
        • Wan W.
        • et al.
        Molecular architecture of the inner ring scaffold of the human nuclear pore complex.
        Science. 2016; 352: 363-365
        • von Appen A.
        • Kosinski J.
        • Sparks L.
        • Ori A.
        • DiGuilio A.L.
        • Vollmer B.
        • et al.
        In situ structural analysis of the human nuclear pore complex.
        Nature. 2015; 526: 140-143
        • Bui K.H.
        • von Appen A.
        • DiGuilio A.L.
        • Ori A.
        • Sparks L.
        • Mackmull M.T.
        • et al.
        Integrated structural analysis of the human nuclear pore complex scaffold.
        Cell. 2013; 155: 1233-1243
        • Hulsmann B.B.
        • Labokha A.A.
        • Gorlich D.
        The permeability of reconstituted nuclear pores provides direct evidence for the selective phase model.
        Cell. 2012; 150: 738-751
        • Xu D.
        • Farmer A.
        • Chook Y.M.
        Recognition of nuclear targeting signals by Karyopherin-beta proteins.
        Curr Opin Struct Biol. 2010; 20: 782-790
        • Ribbeck K.
        • Gorlich D.
        Kinetic analysis of translocation through nuclear pore complexes.
        EMBO J. 2001; 20: 1320-1330
        • Kimura M.
        • Imamoto N.
        Biological significance of the importin-beta family-dependent nucleocytoplasmic transport pathways.
        Traffic. 2014; 15: 727-748
        • Pumroy R.A.
        • Cingolani G.
        Diversification of importin-alpha isoforms in cellular trafficking and disease states.
        Biochem J. 2015; 466: 13-28
        • Chook Y.M.
        • Suel K.E.
        Nuclear import by karyopherin-betas: recognition and inhibition.
        Biochim Biophys Acta. 2011; 1813: 1593-1606
        • Mor A.
        • White M.A.
        • Fontoura B.M.
        Nuclear trafficking in health and disease.
        Curr Opin Cell Biol. 2014; 28: 28-35
        • Stewart M.
        Molecular mechanism of the nuclear protein import cycle.
        Nat Rev Mol Cell Biol. 2007; 8: 195-208
        • Kutay U.
        • Bischoff F.R.
        • Kostka S.
        • Kraft R.
        • Gorlich D.
        Export of importin alpha from the nucleus is mediated by a specific nuclear transport factor.
        Cell. 1997; 90: 1061-1071
        • Wagstaff K.M.
        • Jans D.A.
        Importins and beyond: non-conventional nuclear transport mechanisms.
        Traffic. 2009; 10: 1188-1198
        • Wente S.R.
        • Rout M.P.
        The nuclear pore complex and nuclear transport.
        Cold Spring Harbor perspectives in biology. 2010; 2: a000562
        • Kirli K.
        • Karaca S.
        • Dehne H.J.
        • Samwer M.
        • Pan K.T.
        • Lenz C.
        • et al.
        A deep proteomics perspective on CRM1-mediated nuclear export and nucleocytoplasmic partitioning.
        Elife. 2015; 4
        • Gallouzi I.E.
        • Steitz J.A.
        Delineation of mRNA export pathways by the use of cell-permeable peptides.
        Science. 2001; 294: 1895-1901
        • Kohler A.
        • Hurt E.
        Exporting RNA from the nucleus to the cytoplasm.
        Nat Rev Mol Cell Biol. 2007; 8: 761-773
        • Lund E.
        • Guttinger S.
        • Calado A.
        • Dahlberg J.E.
        • Kutay U.
        Nuclear export of microRNA precursors.
        Science. 2004; 303: 95-98
        • Natalizio B.J.
        • Wente S.R.
        Postage for the messenger: designating routes for nuclear mRNA export.
        Trends Cell Biol. 2013; 23: 365-373
        • Nofrini V.
        • Di Giacomo D.
        • Mecucci C.
        Nucleoporin genes in human diseases.
        Eur J Human Genet. 2016; 24: 1388-1395
        • Raices M.
        • D'Angelo M.A.
        Nuclear pore complex composition: a new regulator of tissue-specific and developmental functions.
        Nat Rev Mol Cell Biol. 2012; 13: 687-699
        • Kohler A.
        • Hurt E.
        Gene regulation by nucleoporins and links to cancer.
        Mol Cell. 2010; 38: 6-15
        • Ibarra A.
        • Benner C.
        • Tyagi S.
        • Cool J.
        • Hetzer M.W.
        Nucleoporin-mediated regulation of cell identity genes.
        Genes Dev. 2016; 30: 2253-2258
        • Hansson J.
        • Rafiee M.R.
        • Reiland S.
        • Polo J.M.
        • Gehring J.
        • Okawa S.
        • et al.
        Highly coordinated proteome dynamics during reprogramming of somatic cells to pluripotency.
        Cell reports. 2012; 2: 1579-1592
        • Moudry P.
        • Lukas C.
        • Macurek L.
        • Neumann B.
        • Heriche J.K.
        • Pepperkok R.
        • et al.
        Nucleoporin NUP153 guards genome integrity by promoting nuclear import of 53BP1.
        Cell Death Differ. 2012; 19: 798-807
        • D'Angelo M.A.
        • Gomez-Cavazos J.S.
        • Mei A.
        • Lackner D.H.
        • Hetzer M.W.
        A change in nuclear pore complex composition regulates cell differentiation.
        Dev Cell. 2012; 22: 446-458
        • Duarte-Rey C.
        • Bogdanos D.
        • Yang C.Y.
        • Roberts K.
        • Leung P.S.
        • Anaya J.M.
        • et al.
        Primary biliary cirrhosis and the nuclear pore complex.
        Autoimmun Rev. 2012; 11: 898-902
        • Zhang X.
        • Chen S.
        • Yoo S.
        • Chakrabarti S.
        • Zhang T.
        • Ke T.
        • et al.
        Mutation in nuclear pore component NUP155 leads to atrial fibrillation and early sudden cardiac death.
        Cell. 2008; 135: 1017-1027
        • Braun D.A.
        • Sadowski C.E.
        • Kohl S.
        • Lovric S.
        • Astrinidis S.A.
        • Pabst W.L.
        • et al.
        Mutations in nuclear pore genes NUP93, NUP205 and XPO5 cause steroid-resistant nephrotic syndrome.
        Nat Genet. 2016; 48: 457-465
        • Xu S.
        • Powers M.A.
        Nuclear pore proteins and cancer.
        Semin Cell Dev Biol. 2009; 20: 620-630
        • Simon D.N.
        • Rout M.P.
        Cancer and the nuclear pore complex.
        Adv Exp Med Biol. 2014; 773: 285-307
        • Winkler J.
        • Ori A.
        • Holzer K.
        • Sticht C.
        • Dauch D.
        • Eiteneuer E.M.
        • et al.
        Prosurvival function of the cellular apoptosis susceptibility/importin-alpha1 transport cycle is repressed by P53 in liver cancer.
        Hepatology. 2014; 60: 884-895
        • Boyault S.
        • Rickman D.S.
        • de Reynies A.
        • Balabaud C.
        • Rebouissou S.
        • Jeannot E.
        • et al.
        Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets.
        Hepatology. 2007; 45: 42-52
        • Liang X.T.
        • Pan K.
        • Chen M.S.
        • Li J.J.
        • Wang H.
        • Zhao J.J.
        • et al.
        Decreased expression of XPO4 is associated with poor prognosis in hepatocellular carcinoma.
        J Gastroenterol Hepatol. 2011; 26: 544-549
        • Singer S.
        • Zhao R.
        • Barsotti A.M.
        • Ouwehand A.
        • Fazollahi M.
        • Coutavas E.
        • et al.
        Nuclear pore component NUP98 is a potential tumor suppressor and regulates posttranscriptional expression of select P53 target genes.
        Mol Cell. 2012; 48: 799-810
        • Zender L.
        • Spector M.S.
        • Xue W.
        • Flemming P.
        • Cordon-Cardo C.
        • Silke J.
        • et al.
        Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach.
        Cell. 2006; 125: 1253-1267
        • Wellmann A.
        • Flemming P.
        • Behrens P.
        • Wuppermann K.
        • Lang H.
        • Oldhafer K.
        • et al.
        High expression of the proliferation and apoptosis associated CSE1L/CAS gene in hepatitis and liver neoplasms: correlation with tumor progression.
        Int J Mol Med. 2001; 7: 489-494
        • Yoshitake K.
        • Tanaka S.
        • Mogushi K.
        • Aihara A.
        • Murakata A.
        • Matsumura S.
        • et al.
        Importin-alpha1 as a novel prognostic target for hepatocellular carcinoma.
        Ann Surg Oncol. 2011; 18: 2093-2103
        • Pascale R.M.
        • Simile M.M.
        • Calvisi D.F.
        • Frau M.
        • Muroni M.R.
        • Seddaiu M.A.
        • et al.
        Role of HSP90, CDC37, and CRM1 as modulators of P16(INK4A) activity in rat liver carcinogenesis and human liver cancer.
        Hepatology. 2005; 42: 1310-1319
        • Winkler J.
        • Roessler S.
        • Sticht C.
        • DiGuilio A.L.
        • Drucker E.
        • Holzer K.
        • et al.
        Cellular apoptosis susceptibility (CAS) is linked to integrin beta1 and required for tumor cell migration and invasion in hepatocellular carcinoma (HCC).
        Oncotarget. 2016;
        • Knoess M.
        • Kurz A.K.
        • Goreva O.
        • Bektas N.
        • Breuhahn K.
        • Odenthal M.
        • et al.
        Nucleoporin 88 expression in hepatitis B and C virus-related liver diseases.
        World J Gastroenterol. 2006; 12: 5870-5874
        • Brinkmann U.
        • Brinkmann E.
        • Gallo M.
        • Pastan I.
        Cloning and characterization of a cellular apoptosis susceptibility gene, the human homologue to the yeast chromosome segregation gene CSE1.
        Proc Natl Acad Sci U S A. 1995; 92: 10427-10431
        • Brinkmann U.
        • Brinkmann E.
        • Gallo M.
        • Scherf U.
        • Pastan I.
        Role of CAS, a human homologue to the yeast chromosome segregation gene CSE1, in toxin and tumor necrosis factor mediated apoptosis.
        Biochemistry. 1996; 35: 6891-6899
        • Tanaka T.
        • Ohkubo S.
        • Tatsuno I.
        • Prives C.
        HCAS/CSE1L associates with chromatin and regulates expression of select P53 target genes.
        Cell. 2007; 130: 638-650
        • Tai C.J.
        • Shen S.C.
        • Lee W.R.
        • Liao C.F.
        • Deng W.P.
        • Chiou H.Y.
        • et al.
        Increased cellular apoptosis susceptibility (CSE1L/CAS) protein expression promotes protrusion extension and enhances migration of MCF-7 breast cancer cells.
        Exp Cell Res. 2010; 316: 2969-2981
        • Huang L.
        • Wang H.Y.
        • Li J.D.
        • Wang J.H.
        • Zhou Y.
        • Luo R.Z.
        • et al.
        KPNA2 promotes cell proliferation and tumorigenicity in epithelial ovarian carcinoma through upregulation of c-Myc and downregulation of FOXO3a.
        Cell Death Dis. 2013; 4: e745
        • Stelma T.
        • Chi A.
        • van der Watt P.J.
        • Verrico A.
        • Lavia P.
        • Leaner V.D.
        Targeting nuclear transporters in cancer: Diagnostic, prognostic and therapeutic potential.
        IUBMB Life. 2016; 68: 268-280
        • Golomb L.
        • Bublik D.R.
        • Wilder S.
        • Nevo R.
        • Kiss V.
        • Grabusic K.
        • et al.
        Importin 7 and exportin 1 link c-Myc and P53 to regulation of ribosomal biogenesis.
        Mol Cell. 2012; 45: 222-232
        • van der Watt P.J.
        • Leaner V.D.
        The nuclear exporter, Crm1, is regulated by NFY and Sp1 in cancer cells and repressed by P53 in response to DNA damage.
        Biochim Biophys Acta. 2011; 1809: 316-326
        • Brinkmann U.
        • Gallo M.
        • Polymeropoulos M.H.
        • Pastan I.
        The human CAS (cellular apoptosis susceptibility) gene mapping on chromosome 20q13 is amplified in BT474 breast cancer cells and part of aberrant chromosomes in breast and colon cancer cell lines.
        Genome Res. 1996; 6: 187-194
        • Shibata T.
        • Aburatani H.
        Exploration of liver cancer genomes.
        Nat Rev Gastroenterol Hepatol. 2014; 11: 340-349
        • van der Watt P.J.
        • Ngarande E.
        • Leaner V.D.
        Overexpression of Kpnbeta1 and Kpnalpha2 importin proteins in cancer derives from deregulated E2F activity.
        PLoS ONE. 2011; 6: e27723
        • Quan Y.
        • Ji Z.L.
        • Wang X.
        • Tartakoff A.M.
        • Tao T.
        Evolutionary and transcriptional analysis of karyopherin beta superfamily proteins.
        Mol Cell Proteomics. 2008; 7: 1254-1269
        • Inami Y.
        • Waguri S.
        • Sakamoto A.
        • Kouno T.
        • Nakada K.
        • Hino O.
        • et al.
        Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells.
        J Cell Biol. 2011; 193: 275-284
        • Lee Y.I.
        • Lee S.
        • Lee Y.
        • Bong Y.S.
        • Hyun S.W.
        • Yoo Y.D.
        • et al.
        The human hepatitis B virus transactivator X gene product regulates Sp1 mediated transcription of an insulin-like growth factor II promoter 4.
        Oncogene. 1998; 16: 2367-2380
        • Sze K.M.
        • Wong K.L.
        • Chu G.K.
        • Lee J.M.
        • Yau T.O.
        • Ng I.O.
        Loss of phosphatase and tensin homolog enhances cell invasion and migration through AKT/Sp-1 transcription factor/matrix metalloproteinase 2 activation in hepatocellular carcinoma and has clinicopathologic significance.
        Hepatology. 2011; 53: 1558-1569
        • Zhang M.
        • Zhang C.
        • Zhang L.
        • Yang Q.
        • Zhou S.
        • Wen Q.
        • et al.
        Nrf2 is a potential prognostic marker and promotes proliferation and invasion in human hepatocellular carcinoma.
        BMC Cancer. 2015; 15: 531
        • Lin J.
        • Zhang L.
        • Huang H.
        • Huang Y.
        • Huang L.
        • Wang J.
        • et al.
        MiR-26b/KPNA2 axis inhibits epithelial ovarian carcinoma proliferation and metastasis through downregulating OCT4.
        Oncotarget. 2015; 6: 23793-23806
        • Ji J.
        • Shi J.
        • Budhu A.
        • Yu Z.
        • Forgues M.
        • Roessler S.
        • et al.
        MicroRNA expression, survival, and response to interferon in liver cancer.
        N Engl J Med. 2009; 361: 1437-1447
        • Vousden K.H.
        • Prives C.
        Blinded by the Light: The Growing Complexity of P53.
        Cell. 2009; 137: 413-431
        • Marchenko N.D.
        • Hanel W.
        • Li D.
        • Becker K.
        • Reich N.
        • Moll U.M.
        Stress-mediated nuclear stabilization of P53 is regulated by ubiquitination and importin-alpha3 binding.
        Cell Death Differ. 2010; 17: 255-267
        • Stommel J.M.
        • Marchenko N.D.
        • Jimenez G.S.
        • Moll U.M.
        • Hope T.J.
        • Wahl G.M.
        A leucine-rich nuclear export signal in the P53 tetramerization domain: regulation of subcellular localization and P53 activity by NES masking.
        EMBO J. 1999; 18: 1660-1672
        • Marine J.C.
        P53 stabilization: the importance of nuclear import.
        Cell Death Differ. 2010; 17: 191-192
        • Chen D.
        • Zhang J.
        • Li M.
        • Rayburn E.R.
        • Wang H.
        • Zhang R.
        RYBP stabilizes P53 by modulating MDM2.
        EMBO Rep. 2009; 10: 166-172
        • Tan K.
        • Zhang X.
        • Cong X.
        • Huang B.
        • Chen H.
        • Chen D.
        Tumor suppressor RYBP harbors three nuclear localization signals and its cytoplasm-located mutant exerts more potent anti-cancer activities than corresponding wild type.
        Cell Signal. 2017; 29: 127-137
        • Wang W.
        • Cheng J.
        • Qin J.J.
        • Voruganti S.
        • Nag S.
        • Fan J.
        • et al.
        RYBP expression is associated with better survival of patients with hepatocellular carcinoma (HCC) and responsiveness to chemotherapy of HCC cells in vitro and in vivo.
        Oncotarget. 2014; 5: 11604-11619
        • Zhao Q.
        • Cai W.
        • Zhang X.
        • Tian S.
        • Zhang J.
        • Li H.
        • et al.
        RYBP Expression Is Regulated by KLF4 and Sp1 and Is Related to Hepatocellular Carcinoma Prognosis.
        J Biol Chem. 2017; 292: 2143-2158
        • el-Deiry W.S.
        • Tokino T.
        • Velculescu V.E.
        • Levy D.B.
        • Parsons R.
        • Trent J.M.
        • et al.
        WAF1, a potential mediator of P53 tumor suppression.
        Cell. 1993; 75: 817-825
        • Ohkoshi S.
        • Yano M.
        • Matsuda Y.
        Oncogenic role of P21 in hepatocarcinogenesis suggests a new treatment strategy.
        World J Gastroenterol. 2015; 21: 12150-12156
        • Abbas T.
        • Dutta A.
        P21 in cancer: intricate networks and multiple activities.
        Nat Rev Cancer. 2009; 9: 400-414
        • Galanos P.
        • Vougas K.
        • Walter D.
        • Polyzos A.
        • Maya-Mendoza A.
        • Haagensen E.J.
        • et al.
        Chronic P53-independent P21 expression causes genomic instability by deregulating replication licensing.
        Nat Cell Biol. 2016; 18: 777-789
        • Romanov V.S.
        • Rudolph K.L.
        P21 shapes cancer evolution.
        Nat Cell Biol. 2016; 18: 722-724
        • Senapedis W.T.
        • Baloglu E.
        • Landesman Y.
        Clinical translation of nuclear export inhibitors in cancer.
        Semin Cancer Biol. 2014; 27: 74-86
        • Ishizawa J.
        • Kojima K.
        • Hail Jr., N.
        • Tabe Y.
        • Andreeff M.
        Expression, function, and targeting of the nuclear exporter chromosome region maintenance 1 (CRM1) protein.
        Pharmacol Ther. 2015; 153: 25-35
        • de La Coste A.
        • Romagnolo B.
        • Billuart P.
        • Renard C.A.
        • Buendia M.A.
        • Soubrane O.
        • et al.
        Somatic mutations of the beta-catenin gene are frequent in mouse and human hepatocellular carcinomas.
        Proc Natl Acad Sci U S A. 1998; 95: 8847-8851
        • Polakis P.
        Wnt signaling and cancer.
        Genes Dev. 2000; 14: 1837-1851
        • Sharma M.
        • Jamieson C.
        • Johnson M.
        • Molloy M.P.
        • Henderson B.R.
        Specific armadillo repeat sequences facilitate beta-catenin nuclear transport in live cells via direct binding to nucleoporins NUP62, NUP153, and RANBP2/NUP358.
        J Biol Chem. 2012; 287: 819-831
        • Koike M.
        • Kose S.
        • Furuta M.
        • Taniguchi N.
        • Yokoya F.
        • Yoneda Y.
        • et al.
        Beta-Catenin shows an overlapping sequence requirement but distinct molecular interactions for its bidirectional passage through nuclear pores.
        J Biol Chem. 2004; 279: 34038-34047
        • Hendriksen J.
        • Fagotto F.
        • van der Velde H.
        • van Schie M.
        • Noordermeer J.
        • Fornerod M.
        RANBP3 enhances nuclear export of active (beta)-catenin independently of CRM1.
        J Cell Biol. 2005; 171: 785-797
        • Lindsay M.E.
        • Holaska J.M.
        • Welch K.
        • Paschal B.M.
        • Macara I.G.
        Ran-binding protein 3 is a cofactor for Crm1-mediated nuclear protein export.
        J Cell Biol. 2001; 153: 1391-1402
        • Fagotto F.
        Looking beyond the Wnt pathway for the deep nature of beta-catenin.
        EMBO Rep. 2013; 14: 422-433
        • Perkins N.D.
        The diverse and complex roles of NF-kappaB subunits in cancer.
        Nat Rev Cancer. 2012; 12: 121-132
        • DiDonato J.A.
        • Mercurio F.
        • Karin M.
        NF-kappaB and the link between inflammation and cancer.
        Immunol Rev. 2012; 246: 379-400
        • Oeckinghaus A.
        • Ghosh S.
        The NF-kappaB family of transcription factors and its regulation.
        Cold Spring Harbor Perspect Biol. 2009; 1: a000034
        • Fagerlund R.
        • Kinnunen L.
        • Kohler M.
        • Julkunen I.
        • Melen K.
        NF-{kappa}B is transported into the nucleus by importin {alpha}3 and importin {alpha}4.
        J Biol Chem. 2005; 280: 15942-15951
        • Fagerlund R.
        • Melen K.
        • Cao X.
        • Julkunen I.
        NF-kappaB p52, RelB and c-Rel are transported into the nucleus via a subset of importin alpha molecules.
        Cell Signal. 2008; 20: 1442-1451
        • Kau T.R.
        • Way J.C.
        • Silver P.A.
        Nuclear transport and cancer: from mechanism to intervention.
        Nat Rev Cancer. 2004; 4: 106-117
        • Naylor R.M.
        • Jeganathan K.B.
        • Cao X.
        • van Deursen J.M.
        Nuclear pore protein NUP88 activates anaphase-promoting complex to promote aneuploidy.
        J Clin Invest. 2016; 126: 543-559
        • Denduluri S.K.
        • Idowu O.
        • Wang Z.
        • Liao Z.
        • Yan Z.
        • Mohammed M.K.
        • et al.
        Insulin-like growth factor (IGF) signaling in tumorigenesis and the development of cancer drug resistance.
        Genes Dis. 2015; 2: 13-25
        • McCubrey J.A.
        • Steelman L.S.
        • Chappell W.H.
        • Abrams S.L.
        • Wong E.W.
        • Chang F.
        • et al.
        Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance.
        Biochim Biophys Acta. 2007; 1773: 1263-1284
        • Tanoue T.
        • Adachi M.
        • Moriguchi T.
        • Nishida E.
        A conserved docking motif in MAP kinases common to substrates, activators and regulators.
        Nat Cell Biol. 2000; 2: 110-116
        • Chuderland D.
        • Seger R.
        Protein-protein interactions in the regulation of the extracellular signal-regulated kinase.
        Mol Biotechnol. 2005; 29: 57-74
        • Chuderland D.
        • Konson A.
        • Seger R.
        Identification and characterization of a general nuclear translocation signal in signaling proteins.
        Mol Cell. 2008; 31: 850-861
        • Whitehurst A.W.
        • Wilsbacher J.L.
        • You Y.
        • Luby-Phelps K.
        • Moore M.S.
        • Cobb M.H.
        ERK2 enters the nucleus by a carrier-independent mechanism.
        Proc Natl Acad Sci U S A. 2002; 99: 7496-7501
        • Matsubayashi Y.
        • Fukuda M.
        • Nishida E.
        Evidence for existence of a nuclear pore complex-mediated, cytosol-independent pathway of nuclear translocation of ERK MAP kinase in permeabilized cells.
        J Biol Chem. 2001; 276: 41755-41760
        • Xu L.
        • Massague J.
        Nucleocytoplasmic shuttling of signal transducers.
        Nat Rev Mol Cell Biol. 2004; 5: 209-219
        • Sonenberg N.
        • Hinnebusch A.G.
        Regulation of translation initiation in eukaryotes: mechanisms and biological targets.
        Cell. 2009; 136: 731-745
        • Culjkovic-Kraljacic B.
        • Baguet A.
        • Volpon L.
        • Amri A.
        • Borden K.L.
        The oncogene eIF4E reprograms the nuclear pore complex to promote mRNA export and oncogenic transformation.
        Cell reports. 2012; 2: 207-215
        • Zheng Y.
        • Gery S.
        • Sun H.
        • Shacham S.
        • Kauffman M.
        • Koeffler H.P.
        KPT-330 inhibitor of XPO1-mediated nuclear export has anti-proliferative activity in hepatocellular carcinoma.
        Cancer Chemother Pharmacol. 2014; 74: 487-495
        • van der Watt P.J.
        • Maske C.P.
        • Hendricks D.T.
        • Parker M.I.
        • Denny L.
        • Govender D.
        • et al.
        The Karyopherin proteins, Crm1 and Karyopherin beta1, are overexpressed in cervical cancer and are critical for cancer cell survival and proliferation.
        Int J Cancer. 2009; 124: 1829-1840
        • Noske A.
        • Weichert W.
        • Niesporek S.
        • Roske A.
        • Buckendahl A.C.
        • Koch I.
        • et al.
        Expression of the nuclear export protein chromosomal region maintenance/exportin 1/Xpo1 is a prognostic factor in human ovarian cancer.
        Cancer. 2008; 112: 1733-1743
        • Tai Y.T.
        • Landesman Y.
        • Acharya C.
        • Calle Y.
        • Zhong M.Y.
        • Cea M.
        • et al.
        CRM1 inhibition induces tumor cell cytotoxicity and impairs osteoclastogenesis in multiple myeloma: molecular mechanisms and therapeutic implications.
        Leukemia. 2014; 28: 155-165
        • Walker C.J.
        • Oaks J.J.
        • Santhanam R.
        • Neviani P.
        • Harb J.G.
        • Ferenchak G.
        • et al.
        Preclinical and clinical efficacy of XPO1/CRM1 inhibition by the karyopherin inhibitor KPT-330 in Ph + leukemias.
        Blood. 2013; 122: 3034-3044
        • Kojima K.
        • Kornblau S.M.
        • Ruvolo V.
        • Dilip A.
        • Duvvuri S.
        • Davis R.E.
        • et al.
        Prognostic impact and targeting of CRM1 in acute myeloid leukemia.
        Blood. 2013; 121: 4166-4174
        • Lapalombella R.
        • Sun Q.
        • Williams K.
        • Tangeman L.
        • Jha S.
        • Zhong Y.
        • et al.
        Selective inhibitors of nuclear export show that CRM1/XPO1 is a target in chronic lymphocytic leukemia.
        Blood. 2012; 120: 4621-4634
        • Azmi A.S.
        • Al-Katib A.
        • Aboukameel A.
        • McCauley D.
        • Kauffman M.
        • Shacham S.
        • et al.
        Selective inhibitors of nuclear export for the treatment of non-Hodgkin's lymphomas.
        Haematologica. 2013; 98: 1098-1106
        • Turner J.G.
        • Dawson J.
        • Sullivan D.M.
        Nuclear export of proteins and drug resistance in cancer.
        Biochem Pharmacol. 2012; 83: 1021-1032
        • Nguyen K.T.
        • Holloway M.P.
        • Altura R.A.
        The CRM1 nuclear export protein in normal development and disease.
        Int J Biochem Mol Biol. 2012; 3: 137-151
        • Kudo N.
        • Matsumori N.
        • Taoka H.
        • Fujiwara D.
        • Schreiner E.P.
        • Wolff B.
        • et al.
        Leptomycin B inactivates CRM1/exportin 1 by covalent modification at a cysteine residue in the central conserved region.
        Proc Natl Acad Sci U S A. 1999; 96: 9112-9117
        • Newlands E.S.
        • Rustin G.J.
        • Brampton M.H.
        Phase I trial of elactocin.
        Br J Cancer. 1996; 74: 648-649
        • RANGAnathan P.
        • Yu X.
        • Na C.
        • Santhanam R.
        • Shacham S.
        • Kauffman M.
        • et al.
        Preclinical activity of a novel CRM1 inhibitor in acute myeloid leukemia.
        Blood. 2012; 120: 1765-1773
        • Abdul Razak A.R.
        • Mau-Soerensen M.
        • Gabrail N.Y.
        • Gerecitano J.F.
        • Shields A.F.
        • Unger T.J.
        • et al.
        First-in-class, first-in-human phase i study of selinexor, a selective inhibitor of nuclear export, in patients with advanced solid tumors.
        J Clin Oncol. 2016; 34: 4142-4150
        • Etchin J.
        • Sun Q.
        • Kentsis A.
        • Farmer A.
        • Zhang Z.C.
        • Sanda T.
        • et al.
        Antileukemic activity of nuclear export inhibitors that spare normal hematopoietic cells.
        Leukemia. 2013; 27: 66-74
        • Etchin J.
        • Montero J.
        • Berezovskaya A.
        • Le B.T.
        • Kentsis A.
        • Christie A.L.
        • et al.
        Activity of a selective inhibitor of nuclear export, selinexor (KPT-330), against AML-initiating cells engrafted into immunosuppressed NSG mice.
        Leukemia. 2016; 30: 190-199
        • Alexander T.B.
        • Lacayo N.J.
        • Choi J.K.
        • Ribeiro R.C.
        • Pui C.H.
        • Rubnitz J.E.
        Phase I Study of Selinexor, a Selective Inhibitor of Nuclear Export, in Combination With Fludarabine and Cytarabine, in Pediatric Relapsed or Refractory Acute Leukemia.
        J Clin Oncol. 2016; 34: 4094-4101
        • Kim J.
        • McMillan E.
        • Kim H.S.
        • Venkateswaran N.
        • Makkar G.
        • Rodriguez-Canales J.
        • et al.
        XPO1-dependent nuclear export is a druggable vulnerability in KRAS-mutant lung cancer.
        Nature. 2016; 538: 114-117
        • Weiler S.M.
        • Pinna F.
        • Wolf T.
        • Lutz T.
        • Geldiyev A.
        • Sticht C.
        • et al.
        Induction of Chromosome Instability by Activation of Yes Associated Protein and Forkhead box M1 in Liver Cancer.
        Gastroenterology. 2017;
        • Weinstein I.B.
        • Joe A.
        Oncogene addiction.
        Cancer Res. 2008; 68 ([Discussion 3080]): 3077-3080
        • Gashaw I.
        • Ellinghaus P.
        • Sommer A.
        • Asadullah K.
        What makes a good drug target?.
        Drug Discov Today. 2011; 16: 1037-1043
        • Fagerlund R.
        • Melen K.
        • Kinnunen L.
        • Julkunen I.
        Arginine/lysine-rich nuclear localization signals mediate interactions between dimeric STATs and importin alpha 5.
        J Biol Chem. 2002; 277: 30072-30078
        • Melen K.
        • Fagerlund R.
        • Franke J.
        • Kohler M.
        • Kinnunen L.
        • Julkunen I.
        Importin alpha nuclear localization signal binding sites for STAT1, STAT2, and influenza A virus nucleoprotein.
        J Biol Chem. 2003; 278: 28193-28200
        • Ma J.
        • Cao X.
        Regulation of Stat3 nuclear import by importin alpha5 and importin alpha7 via two different functional sequence elements.
        Cell Signal. 2006; 18: 1117-1126
        • Begitt A.
        • Meyer T.
        • van Rossum M.
        • Vinkemeier U.
        Nucleocytoplasmic translocation of Stat1 is regulated by a leucine-rich export signal in the coiled-coil domain.
        P Natl Acad Sci USA. 2000; 97: 10418-10423
        • Chung J.
        • Khadka P.
        • Chung I.K.
        Nuclear import of hTERT requires a bipartite nuclear localization signal and Akt-mediated phosphorylation.
        J Cell Sci. 2012; 125: 2684-2697
        • Seimiya H.
        • Sawada H.
        • Muramatsu Y.
        • Shimizu M.
        • Ohko K.
        • Yamane K.
        • et al.
        Involvement of 14-3-3 proteins in nuclear localization of telomerase.
        EMBO J. 2000; 19: 2652-2661
        • Shi Y.
        • Massague J.
        Mechanisms of TGF-beta signaling from cell membrane to the nucleus.
        Cell. 2003; 113: 685-700
        • Xu L.
        • Alarcon C.
        • Col S.
        • Massague J.
        Distinct domain utilization by Smad3 and Smad4 for nucleoporin interaction and nuclear import.
        J Biol Chem. 2003; 278: 42569-42577
        • Dai F.
        • Lin X.
        • Chang C.
        • Feng X.H.
        Nuclear export of Smad2 and Smad3 by RanBP3 facilitates termination of TGF-beta signaling.
        Dev Cell. 2009; 16: 345-357
        • Kurisaki A.
        • Kurisaki K.
        • Kowanetz M.
        • Sugino H.
        • Yoneda Y.
        • Heldin C.H.
        • et al.
        The mechanism of nuclear export of Smad3 involves exportin 4 and Ran.
        Mol Cell Biol. 2006; 26: 1318-1332