Advertisement

Acid-base disorders in liver disease

      Summary

      Alongside the kidneys and lungs, the liver has been recognised as an important regulator of acid-base homeostasis. While respiratory alkalosis is the most common acid-base disorder in chronic liver disease, various complex metabolic acid-base disorders may occur with liver dysfunction. While the standard variables of acid-base equilibrium, such as pH and overall base excess, often fail to unmask the underlying cause of acid-base disorders, the physical–chemical acid-base model provides a more in-depth pathophysiological assessment for clinical judgement of acid-base disorders, in patients with liver diseases.
      Patients with stable chronic liver disease have several offsetting acidifying and alkalinising metabolic acid-base disorders. Hypoalbuminaemic alkalosis is counteracted by hyperchloraemic and dilutional acidosis, resulting in a normal overall base excess. When patients with liver cirrhosis become critically ill (e.g., because of sepsis or bleeding), this fragile equilibrium often tilts towards metabolic acidosis, which is attributed to lactic acidosis and acidosis due to a rise in unmeasured anions. Interestingly, even though patients with acute liver failure show significantly elevated lactate levels, often, no overt acid-base disorder can be found because of the offsetting hypoalbuminaemic alkalosis.
      In conclusion, patients with liver diseases may have multiple co-existing metabolic acid-base abnormalities. Thus, knowledge of the pathophysiological and diagnostic concepts of acid-base disturbances in patients with liver disease is critical for therapeutic decision making.

      Keywords

      Linked Article

      • Acid-base disorders in liver disease
        Journal of HepatologyVol. 68Issue 3
        • Preview
          We read with great interest the article by Scheiner et al. focusing on the topic of acid-base disorders in patients with advanced liver disease.1
        • Full-Text
        • PDF
      • Reply to: “Acid-base disorders in liver disease”
        Journal of HepatologyVol. 68Issue 3
        • Preview
          We would like to thank Mazzeo and Maimone for their insightful comments on our review “Acid-base disorders in liver disease”.1 While we intentionally kept our main focus on metabolic acid-base disorders, Mazzeo and Maimone summarized the literature and shared their valuable thoughts on respiratory alterations and monitoring of the liver-lung crosstalk in critically ill patients with acute or chronic liver failure.2
        • Full-Text
        • PDF
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Hepatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Sacks G.S.
        The ABC’s of acid-base balance.
        J Pediatr Pharmacol Ther. 2004; 9: 235-242
        • Bernardi M.
        • Predieri S.
        Disturbances of acid-base balance in cirrhosis: a neglected issue warranting further insights.
        Liver Int. 2005; 25: 463-466
        • Cohen R.D.
        Roles of the liver and kidney in acid-base regulation and its disorders.
        Br J Anaesth. 1991; 67: 154-164
        • Halperin M.L.
        • Jungas R.L.
        Metabolic production and renal disposal of hydrogen ions.
        Kidney Int. 1983; 24: 709-713
        • Haussinger D.
        • Steeb R.
        • Gerok W.
        Metabolic alkalosis as driving force for urea synthesis in liver disease: pathogenetic model and therapeutic implications.
        Clin Invest. 1992; 70: 411-415
        • Haussinger D.
        • Steeb R.
        • Gerok W.
        Ammonium and bicarbonate homeostasis in chronic liver disease.
        Klin Wochenschr. 1990; 68: 175-182
      1. Henderson LJ. Das Gleichgewicht der Säuren und Basen im tierischen Organismus. Ergebnisse der Physiologie, biologischen Chemie und experimentellen Pharmakologie. 1909;8:254–325.

        • Schwartz W.B.
        • Relman A.S.
        A critique of the parameters used in the evaluation of acid-base disorders. “Whole-blood buffer base” and “standard bicarbonate” compared with blood pH and plasma bicarbonate concentration.
        N Engl J Med. 1963; 268: 1382-1388
        • Stewart P.A.
        Modern quantitative acid-base chemistry.
        Can J Physiol Pharmacol. 1983; 61: 1444-1461
        • Naka T.
        • Bellomo R.
        • Morimatsu H.
        • et al.
        Acid-base balance in combined severe hepatic and renal failure: a quantitative analysis.
        Int J Artif Organs. 2008; 31: 288-294
        • Adrogue H.J.
        • Madias N.E.
        Management of life-threatening acid-base disorders. First of two parts.
        N Engl J Med. 1998; 338: 26-34
        • De Backer D.
        • Creteur J.
        • Silva E.
        • Vincent J.L.
        The hepatosplanchnic area is not a common source of lactate in patients with severe sepsis.
        Crit Care Med. 2001; 29: 256-261
        • Nielsen O.B.
        • Clausen T.
        The Na+/K(+)-pump protects muscle excitability and contractility during exercise.
        Exerc Sport Sci Rev. 2000; 28: 159-164
        • Rowell L.B.
        • Kraning 2nd, K.K.
        • Evans T.O.
        • Kennedy J.W.
        • Blackmon J.R.
        • Kusumi F.
        Splanchnic removal of lactate and pyruvate during prolonged exercise in man.
        J Appl Physiol. 1966; 21: 1773-1783
        • Cohen R.D.
        Some acid problems.
        J R Coll Physicians Lond. 1982; 16: 69-79
        • Samsel R.W.
        • Cherqui D.
        • Pietrabissa A.
        • et al.
        Hepatic oxygen and lactate extraction during stagnant hypoxia.
        J Appl Physiol. 1991; 70: 186-193
        • Goldstein P.J.
        • Simmons D.H.
        • Tashkin D.P.
        Effect of acid-base alterations on hepatic lactate utilization.
        J Physiol. 1972; 223: 261-278
        • Chiolero R.
        • Tappy L.
        • Gillet M.
        • et al.
        Effect of major hepatectomy on glucose and lactate metabolism.
        Ann Surg. 1999; 229: 505-513
      2. Nöldge-Schomburg G, Armbruster K, Geiger K, Zander R. Experimentelle Untersuchungen zum Säure-Basen-Haushalt und Laktatmetabolismus der Leber. Anästhesiol. Intensivmed. Notfallmed. Schmerzther. 1995;Sonderheft 1(30):43–47.

        • Gilfix B.M.
        • Bique M.
        • Magder S.
        A physical chemical approach to the analysis of acid-base balance in the clinical setting.
        J Crit Care. 1993; 8: 187-197
        • Funk G.C.
        Stewart's acid-base approach.
        Wien Klin Wochenschr. 2007; 119: 390-403
        • Stinbaugh B.J.
        • Marliss E.B.
        • Goldstein M.B.
        • Fox I.H.
        • Schloeder F.X.
        • Halperin M.L.
        Mechanism for the paradoxical aciduria following alkali administration to prolonged-fasted patients.
        Metabolism. 1975; 24: 915-922
        • Lipsky S.R.
        • Apler B.J.
        • Rubini M.E.
        • Van Eck W.F.
        • Gordon M.E.
        The effects of alkalosis upon ketone body production and carbohydrate metabolism in man.
        J Clin Invest. 1954; 33: 1269-1276
        • LaGrange B.M.
        • Hood V.L.
        Ketoacid production in acute respiratory and metabolic acidosis and alkalosis in rats.
        Am J Physiol. 1989; 256: F437-445
        • Haussinger D.
        • Gerok W.
        Hepatic urea synthesis and pH regulation. Role of CO2, HCO3-, pH and the activity of carbonic anhydrase.
        Eur J Biochem. 1985; 152: 381-386
        • Atkinson D.E.
        • Camien M.N.
        The role or urea synthesis in the removal of metabolic bicarbonate and the regulation of blood pH.
        Curr Top Cell Regul. 1982; 21: 261-302
        • Halperin M.L.
        • Chen C.B.
        • Cheema-Dhadli S.
        • West M.L.
        • Jungas R.L.
        Is urea formation regulated primarily by acid-base balance in vivo?.
        Am J Physiol. 1986; 250: F605-612
        • Cheema-Dhadli S.
        • Jungas R.L.
        • Halperin M.L.
        Regulation of urea synthesis by acid-base balance in vivo: role of NH3 concentration.
        Am J Physiol. 1987; 252: F221-225
        • Prytz H.
        • Thomsen A.C.
        Acid-base status in liver cirrhosis. Disturbances in stable, terminal and portal-caval shunted patients.
        Scand J Gastroenterol. 1976; 11: 249-256
        • Moreau R.
        • Hadengue A.
        • Soupison T.
        • et al.
        Arterial and mixed venous acid-base status in patients with cirrhosis. Influence of liver failure.
        Liver. 1993; 13: 20-24
        • Shangraw R.E.
        • Jahoor F.
        Effect of liver disease and transplantation on urea synthesis in humans: relationship to acid-base status.
        Am J Physiol. 1999; 276: G1145-1152
        • Hosch M.
        • Muser J.
        • Hulter H.N.
        • Krapf R.
        Ureagenesis: evidence for a lack of hepatic regulation of acid-base equilibrium in humans.
        Am J Physiol Renal Physiol. 2004; 286: F94-99
        • Boon L.
        • Blommaart P.J.
        • Meijer A.J.
        • Lamers W.H.
        • Schoolwerth A.C.
        Acute acidosis inhibits liver amino acid transport: no primary role for the urea cycle in acid-base balance.
        Am J Physiol. 1994; 267: F1015-1020
        • Boon L.
        • Blommaart P.J.
        • Meijer A.J.
        • Lamers W.H.
        • Schoolwerth A.C.
        Response of hepatic amino acid consumption to chronic metabolic acidosis.
        Am J Physiol. 1996; 271: F198-202
        • Funk G.C.
        • Doberer D.
        • Fuhrmann V.
        • et al.
        The acidifying effect of lactate is neutralized by the alkalinizing effect of hypoalbuminemia in non-paracetamol-induced acute liver failure.
        J Hepatol. 2006; 45: 387-392
        • Funk G.C.
        • Doberer D.
        • Kneidinger N.
        • Lindner G.
        • Holzinger U.
        • Schneeweiss B.
        Acid-base disturbances in critically ill patients with cirrhosis.
        Liver Int. 2007; 27: 901-909
        • Funk G.C.
        • Doberer D.
        • Osterreicher C.
        • Peck-Radosavljevic M.
        • Schmid M.
        • Schneeweiss B.
        Equilibrium of acidifying and alkalinizing metabolic acid-base disorders in cirrhosis.
        Liver Int. 2005; 25: 505-512
        • Fencl V.
        • Jabor A.
        • Kazda A.
        • Figge J.
        Diagnosis of metabolic acid-base disturbances in critically ill patients.
        Am J Respir Crit Care Med. 2000; 162: 2246-2251
        • Peck-Radosavljevic M.
        • Angeli P.
        • Cordoba J.
        • Farges O.
        • Valla D.
        Managing complications in cirrhotic patients.
        United European Gastroenterol J. 2015; 3: 80-94
        • Karetzky M.S.
        • Mithoefer J.C.
        The cause of hyperventilation and arterial hypoxia in patients with cirrhosis of the liver.
        Am J Med Sci. 1967; 254: 797-804
        • Mulhausen R.
        • Eichenholz A.
        • Blumentals A.
        Acid-base disturbances in patients with cirrhosis of the liver.
        Medicine. 1967; 46: 185-189
        • Oster J.R.
        • Perez G.O.
        Acid-base disturbances in liver disease.
        J Hepatol. 1986; 2: 299-306
        • Kaltsakas G.
        • Antoniou E.
        • Palamidas A.F.
        • et al.
        Dyspnea and respiratory muscle strength in end-stage liver disease.
        World J Hepatol. 2013; 5: 56-63
        • Henriksen J.H.
        • Bendtsen F.
        • Moller S.
        Acid-base disturbance in patients with cirrhosis: relation to hemodynamic dysfunction.
        Eur J Gastroenterol Hepatol. 2015; 27: 920-927
        • Halank M.
        • Strassburg C.P.
        • Hoeper M.M.
        Pulmonary complications of liver cirrhosis: hepatopulmonary syndrome, portopulmonary hypertension and hepatic hydrothorax.
        Internist. 2010; 51: 255-263
        • Hoeper M.M.
        • Krowka M.J.
        • Strassburg C.P.
        Portopulmonary hypertension and hepatopulmonary syndrome.
        Lancet. 2004; 363: 1461-1468
        • Kiafar C.
        • Gilani N.
        Hepatic hydrothorax: current concepts of pathophysiology and treatment options.
        Ann Hepatol. 2008; 7: 313-320
        • Heinemann H.O.
        Respiration and circulation in patients with portal cirrhosis of the liver.
        Circulation. 1960; 22: 154-159
        • Lustik S.J.
        • Chhibber A.K.
        • Kolano J.W.
        • et al.
        The hyperventilation of cirrhosis: progesterone and estradiol effects.
        Hepatology. 1997; 25: 55-58
        • Rodriguez-Roisin R.
        • Krowka M.J.
        • Herve P.
        • Fallon M.B.
        Committee ERSTFP-HVDS. Pulmonary-Hepatic vascular Disorders (PHD).
        Eur Respir J. 2004; 24: 861-880
        • Krowka M.J.
        Portopulmonary hypertension: diagnostic advances and caveats.
        Liver Transpl. 2003; 9: 1336-1337
        • Shangraw R.E.
        • Winter R.
        • Hromco J.
        • Robinson S.T.
        • Gallaher E.J.
        Amelioration of lactic acidosis with dichloroacetate during liver transplantation in humans.
        Anesthesiology. 1994; 81: 1127-1138
        • Casey T.H.
        • Summerskill W.H.
        • Bickford R.G.
        • Rosevear J.W.
        Body and serum potassium in liver disease. II. Relationships to arterial ammonia, blood Ph, and hepatic coma.
        Gastroenterology. 1965; 48: 208-215
        • McAuliffe J.J.
        • Lind L.J.
        • Leith D.E.
        • Fencl V.
        Hypoproteinemic alkalosis.
        Am J Med. 1986; 81: 86-90
        • Kawaguchi T.
        • Izumi N.
        • Charlton M.R.
        • Sata M.
        Branched-chain amino acids as pharmacological nutrients in chronic liver disease.
        Hepatology. 2011; 54: 1063-1070
        • Story D.A.
        • Poustie S.
        • Bellomo R.
        Quantitative physical chemistry analysis of acid-base disorders in critically ill patients.
        Anaesthesia. 2001; 56: 530-533
        • Gines P.
        • Berl T.
        • Bernardi M.
        • et al.
        Hyponatremia in cirrhosis: from pathogenesis to treatment.
        Hepatology. 1998; 28: 851-864
        • Sinha V.K.
        • Ko B.
        Hyponatremia in cirrhosis-pathogenesis, treatment, and prognostic significance.
        Adv Chronic Kidney Dis. 2015; 22: 361-367
        • Angeli P.
        • Wong F.
        • Watson H.
        • Gines P.
        • Investigators C.
        Hyponatremia in cirrhosis: Results of a patient population survey.
        Hepatology. 2006; 44: 1535-1542
        • John S.
        • Thuluvath P.J.
        Hyponatremia in cirrhosis: pathophysiology and management.
        World J Gastroenterol. 2015; 21: 3197-3205
        • Bichet D.
        • Szatalowicz V.
        • Chaimovitz C.
        • Schrier R.W.
        Role of vasopressin in abnormal water excretion in cirrhotic patients.
        Ann Intern Med. 1982; 96: 413-417
        • Doberer D.
        • Funk G.C.
        • Schneeweiss B.
        Dilutional acidosis: an endless story of confusion.
        Crit Care Med. 2003; 31 ([Author reply 338]): 337-338
        • Brunner R.
        • Drolz A.
        • Scherzer T.M.
        • et al.
        Renal tubular acidosis is highly prevalent in critically ill patients.
        Crit Care. 2015; 19: 148
        • Koch S.M.
        • Taylor R.W.
        Chloride ion in intensive care medicine.
        Crit Care Med. 1992; 20: 227-240
        • Madias N.E.
        • Adrogue H.J.
        Cross-talk between two organs: how the kidney responds to disruption of acid-base balance by the lung.
        Nephron Physiol. 2003; 93: p61-66
        • Gennari F.J.
        • Goldstein M.B.
        • Schwartz W.B.
        The nature of the renal adaptation to chronic hypocapnia.
        J Clin Invest. 1972; 51: 1722-1730
        • Cohen J.J.
        • Madias N.E.
        • Wolf C.J.
        • Schwartz W.B.
        Regulation of acid-base equilibrium in chronic hypocapnia. Evidence that the response of the kidney is not geared to the defense of extracellular (H+).
        J Clin Invest. 1976; 57: 1483-1489
        • Madias N.E.
        Renal acidification responses to respiratory acid-base disorders.
        J Nephrol. 2010; 23: S85-91
        • Ahya S.N.
        • Jose Soler M.
        • Levitsky J.
        • Batlle D.
        Acid-base and potassium disorders in liver disease.
        Semin Nephrol. 2006; 26: 466-470
        • Gabow P.A.
        • Moore S.
        • Schrier R.W.
        Spironolactone-induced hyperchloremic acidosis in cirrhosis.
        Ann Intern Med. 1979; 90: 338-340
        • Kocyigit I.
        • Unal A.
        • Kavuncuoglu F.
        • et al.
        Renal tubular acidosis in renal transplantation recipients.
        Ren Fail. 2010; 32: 687-690
        • Golding P.L.
        • Mason A.S.
        Renal tubular acidosis and autoimmune liver disease.
        Gut. 1971; 12: 153-157
        • Batlle D.C.
        • Hizon M.
        • Cohen E.
        • Gutterman C.
        • Gupta R.
        The use of the urinary anion gap in the diagnosis of hyperchloremic metabolic acidosis.
        N Engl J Med. 1988; 318: 594-599
        • Yunos N.M.
        • Bellomo R.
        • Hegarty C.
        • Story D.
        • Ho L.
        • Bailey M.
        Association between a chloride-liberal vs. chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults.
        JAMA. 2012; 308: 1566-1572
        • Young P.
        • Bailey M.
        • Beasley R.
        • et al.
        Effect of a buffered crystalloid solution vs. saline on acute kidney injury among patients in the intensive care unit: the SPLIT randomized clinical trial.
        JAMA. 2015; 314: 1701-1710
        • Thomson S.J.
        • Moran C.
        • Cowan M.L.
        • et al.
        Outcomes of critically ill patients with cirrhosis admitted to intensive care: an important perspective from the non-transplant setting.
        Aliment Pharmacol Ther. 2010; 32: 233-243
        • Ho Y.P.
        • Chen Y.C.
        • Yang C.
        • et al.
        Outcome prediction for critically ill cirrhotic patients: a comparison of APACHE II and Child-Pugh scoring systems.
        J Intensive Care Med. 2004; 19: 105-110
        • Jalan R.
        • Stadlbauer V.
        • Sen S.
        • Cheshire L.
        • Chang Y.M.
        • Mookerjee R.P.
        Role of predisposition, injury, response and organ failure in the prognosis of patients with acute-on-chronic liver failure: a prospective cohort study.
        Crit Care. 2012; 16: R227
        • Kraut J.A.
        • Madias N.E.
        Lactic acidosis.
        N Engl J Med. 2014; 371: 2309-2319
        • Ince C.
        The microcirculation is the motor of sepsis.
        Crit Care. 2005; 9: S13-19
        • Taylor D.J.
        • Faragher E.B.
        • Evanson J.M.
        Inflammatory cytokines stimulate glucose uptake and glycolysis but reduce glucose oxidation in human dermal fibroblasts in vitro.
        Circ Shock. 1992; 37: 105-110
        • Jeppesen J.B.
        • Mortensen C.
        • Bendtsen F.
        • Moller S.
        Lactate metabolism in chronic liver disease.
        Scand J Clin Lab Invest. 2013; 73: 293-299
        • Almenoff P.L.
        • Leavy J.
        • Weil M.H.
        • Goldberg N.B.
        • Vega D.
        • Rackow E.C.
        Prolongation of the half-life of lactate after maximal exercise in patients with hepatic dysfunction.
        Crit Care Med. 1989; 17: 870-873
        • Woll P.J.
        • Record C.O.
        Lactate elimination in man: effects of lactate concentration and hepatic dysfunction.
        Eur J Clin Invest. 1979; 9: 397-404
        • Pastor C.M.
        • Billiar T.R.
        • Losser M.R.
        • Payen D.M.
        Liver injury during sepsis.
        J Crit Care. 1995; 10: 183-197
        • Levraut J.
        • Ciebiera J.P.
        • Chave S.
        • et al.
        Mild hyperlactatemia in stable septic patients is due to impaired lactate clearance rather than overproduction.
        Am J Respir Crit Care Med. 1998; 157: 1021-1026
        • Douzinas E.E.
        • Tsidemiadou P.D.
        • Pitaridis M.T.
        • et al.
        The regional production of cytokines and lactate in sepsis-related multiple organ failure.
        Am J Respir Crit Care Med. 1997; 155: 53-59
        • Bakker J.
        • Nijsten M.W.
        • Jansen T.C.
        Clinical use of lactate monitoring in critically ill patients.
        Ann Intensive Care. 2013; 3: 12
        • Kellum J.A.
        • Bellomo R.
        • Kramer D.J.
        • Pinsky M.R.
        Hepatic anion flux during acute endotoxemia.
        J Appl Physiol. 1995; 78: 2212-2217
        • Bihari D.
        • Gimson A.E.
        • Lindridge J.
        • Williams R.
        Lactic acidosis in fulminant hepatic failure. Some aspects of pathogenesis and prognosis.
        J Hepatol. 1985; 1: 405-416
        • Moreau R.
        • Hadengue A.
        • Soupison T.
        • et al.
        Septic shock in patients with cirrhosis: hemodynamic and metabolic characteristics and intensive care unit outcome.
        Crit Care Med. 1992; 20: 746-750
        • Kellum J.A.
        • Kramer D.J.
        • Pinsky M.R.
        Strong ion gap: a methodology for exploring unexplained anions.
        J Crit Care. 1995; 10: 51-55
        • Sterling S.A.
        • Puskarich M.A.
        • Jones A.E.
        The effect of liver disease on lactate normalization in severe sepsis and septic shock: a cohort study.
        Clin Exp Emerg Med. 2015; 2: 197-202
        • Nadim M.K.
        • Durand F.
        • Kellum J.A.
        • et al.
        Management of the critically ill patient with cirrhosis: A multidisciplinary perspective.
        J Hepatol. 2016; 64: 717-735
        • Myc L.A.
        • Stine J.G.
        • Chakrapani R.
        • Kadl A.
        • Argo C.K.
        Vasopressin use in critically ill cirrhosis patients with catecholamine-resistant septic shock: The CVICU cohort.
        World J Hepatol. 2017; 9: 106-113
        • Shangraw R.E.
        • Jahoor F.
        Mechanism of dichloroacetate-induced hypolactatemia in humans with or without cirrhosis.
        Metabolism. 2004; 53: 1087-1094
        • Stacpoole P.W.
        • Nagaraja N.V.
        • Hutson A.D.
        Efficacy of dichloroacetate as a lactate-lowering drug.
        J Clin Pharmacol. 2003; 43: 683-691
        • Shangraw R.E.
        • Jahoor F.
        • Wolfe R.R.
        • Lang C.H.
        Pyruvate dehydrogenase inactivity is not responsible for sepsis-induced insulin resistance.
        Crit Care Med. 1996; 24: 566-574
        • Shangraw R.E.
        • Rabkin J.M.
        • Lopaschuk G.D.
        Hepatic pyruvate dehydrogenase activity in humans: effect of cirrhosis, transplantation, and dichloroacetate.
        Am J Physiol. 1998; 274: G569-577
        • Stacpoole P.W.
        • Kerr D.S.
        • Barnes C.
        • et al.
        Controlled clinical trial of dichloroacetate for treatment of congenital lactic acidosis in children.
        Pediatrics. 2006; 117: 1519-1531
        • Brackett C.C.
        Clarifying metformin's role and risks in liver dysfunction.
        J Am Pharm Assoc. 2010; 50: 407-410
        • Zhang X.
        • Harmsen W.S.
        • Mettler T.A.
        • et al.
        Continuation of metformin use after a diagnosis of cirrhosis significantly improves survival of patients with diabetes.
        Hepatology. 2014; 60: 2008-2016
        • Record C.O.
        • Iles R.A.
        • Cohen R.D.
        • Williams R.
        Acid-base and metabolic disturbances in fulminant hepatic failure.
        Gut. 1975; 16: 144-149
        • Mizock B.A.
        Significance of hyperlactatemia without acidosis during hypermetabolic stress.
        Crit Care Med. 1997; 25: 1780-1781
        • Mizock B.A.
        Alterations in carbohydrate metabolism during stress: a review of the literature.
        Am J Med. 1995; 98: 75-84
        • Record C.O.
        • Chase R.A.
        • Williams R.
        • Appleton D.
        Disturbances of lactate metabolism in patients with liver damage due to paracetamol overdose.
        Metabolism. 1981; 30: 638-643
        • Clemmesen J.O.
        • Hoy C.E.
        • Kondrup J.
        • Ott P.
        Splanchnic metabolism of fuel substrates in acute liver failure.
        J Hepatol. 2000; 33: 941-948
        • Murphy N.D.
        • Kodakat S.K.
        • Wendon J.A.
        • et al.
        Liver and intestinal lactate metabolism in patients with acute hepatic failure undergoing liver transplantation.
        Crit Care Med. 2001; 29: 2111-2118
        • Walsh T.S.
        • McLellan S.
        • Mackenzie S.J.
        • Lee A.
        Hyperlactatemia and pulmonary lactate production in patients with fulminant hepatic failure.
        Chest. 1999; 116: 471-476
        • Wilmore D.W.
        • Aulick L.H.
        • Mason A.D.
        • Pruitt Jr., B.A.
        Influence of the burn wound on local and systemic responses to injury.
        Ann Surg. 1977; 186: 444-458
        • Routsi C.
        • Bardouniotou H.
        • Delivoria-Ioannidou V.
        • Kazi D.
        • Roussos C.
        • Zakynthinos S.
        Pulmonary lactate release in patients with acute lung injury is not attributable to lung tissue hypoxia.
        Crit Care Med. 1999; 27: 2469-2473
        • Gore D.C.
        • Jahoor F.
        • Hibbert J.M.
        • DeMaria E.J.
        Lactic acidosis during sepsis is related to increased pyruvate production, not deficits in tissue oxygen availability.
        Ann Surg. 1996; 224: 97-102
        • Sahlin K.
        • Harris R.C.
        • Nylind B.
        • Hultman E.
        Lactate content and pH in muscle obtained after dynamic exercise.
        Pflugers Arch. 1976; 367: 143-149
        • Gladden L.B.
        Lactate metabolism: a new paradigm for the third millennium.
        J Physiol. 2004; 558: 5-30
        • Bruegger D.
        • Jacob M.
        • Scheingraber S.
        • et al.
        Changes in acid-base balance following bolus infusion of 20% albumin solution in humans.
        Intensive Care Med. 2005; 31: 1123-1127
        • Adrogue H.J.
        • Madias N.E.
        Management of life-threatening acid-base disorders. Second of two parts.
        N Engl J Med. 1998; 338: 107-111
        • Cabrera J.L.
        • Pinsky M.R.
        Management of septic shock: a protocol-less approach.
        Crit Care. 2015; 19: 260
        • Schlichtig R.
        • Grogono A.W.
        • Severinghaus J.W.
        Human PaCO2 and standard base excess compensation for acid-base imbalance.
        Crit Care Med. 1998; 26: 1173-1179