Advertisement

Targets for immunotherapy of liver cancer

  • Tim F. Greten
    Affiliations
    Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
    Search for articles by this author
  • Bruno Sangro
    Correspondence
    Corresponding author. Address: Liver Unit, Clínica Universidad de Navarra, Avda. Pio XII 36, 31008 Pamplona, Spain. Tel.: +34 948 296 666x4764; fax: +34 948 296 500.
    Affiliations
    Liver Unit, Clínica Universidad de Navarra-IDISNA, Pamplona, Spain, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain
    Search for articles by this author
Published:September 15, 2017DOI:https://doi.org/10.1016/j.jhep.2017.09.007

      Summary

      Drug development in hepatocellular carcinoma (HCC) has been characterised by many failures in the past. Despite good rationales and promising phase II data, many phase III trials failed. Immunotherapy represents an alternative treatment approach that has been successful in many different cancer types. As an inflammation induced cancer, HCC represents a very interesting target for immune based approaches. Indeed, early results from clinical trials testing immune checkpoint inhibitors are not only promising, but have already led to evaluation in a phase III setting. Herein, we summarise our current knowledge on the rationale, mechanism of action and clinical data for immune checkpoint blockade in HCC. In addition, we provide an overview of other novel immune based approaches currently under development for the treatment of HCC, such as adoptive cell based and antibody-based approaches.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Hepatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      Author names in bold designate shared co-first authorship

        • Llovet J.M.
        • Zucman-Rossi J.
        • Pikarsky E.
        • Sangro B.
        • Schwartz M.
        • Sherman M.
        • et al.
        Hepatocellular carcinoma.
        Nat Rev Dis Primers. 2016; 2: 16018
        • Bruix J.
        • Qin S.
        • Merle P.
        • Granito A.
        • Huang Y.-H.
        • Bodoky G.
        • et al.
        Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial.
        Lancet. 2017; 389: 56-66
        • Greten T.F.
        • Manns M.P.
        • Korangy F.
        Immunotherapy of hepatocellular carcinoma.
        J Hepatol. 2006; 45: 868-878
        • Greten T.F.
        • Manns M.P.
        • Korangy F.
        Immunotherapy of HCC.
        Rev Recent Clin Trials. 2008; 3: 31-39
        • Couzin-Frankel J.
        Breakthrough of the year 2013. Cancer immunotherapy.
        Science. 2013; 342: 1432-1433
        • Prieto J.
        • Melero I.
        • Sangro B.
        Immunological landscape and immunotherapy of hepatocellular carcinoma.
        Nat Rev Gastroenterol Hepatol. 2015; 12: 681-700
        • Le Mercier I.
        • Lines J.L.
        • Noelle R.J.
        Beyond CTLA-4 and PD-1, the generation Z of negative checkpoint regulators.
        Front Immunol. 2015; 6: 418
        • Wing K.
        • Onishi Y.
        • Prieto-Martin P.
        • Yamaguchi T.
        • Miyara M.
        • Fehervari Z.
        • et al.
        CTLA-4 control over Foxp3+ regulatory T cell function.
        Science. 2008; 322: 271-275
        • Han Y.
        • Chen Z.
        • Yang Y.
        • Jiang Z.
        • Gu Y.
        • Liu Y.
        • et al.
        Human CD14+ CTLA-4+ regulatory dendritic cells suppress T-cell response by cytotoxic T-lymphocyte antigen-4-dependent IL-10 and indoleamine-2,3-dioxygenase production in hepatocellular carcinoma.
        Hepatology. 2014; 59: 567-579
        • Barber D.L.
        • Wherry E.J.
        • Masopust D.
        • Zhu B.
        • Allison J.P.
        • Sharpe A.H.
        • et al.
        Restoring function in exhausted CD8 T cells during chronic viral infection.
        Nature. 2006; 439: 682-687
        • Anderson A.C.
        Tim-3: an emerging target in the cancer immunotherapy landscape.
        Cancer Immunol Res. 2014; 2: 393-398
        • Nguyen L.T.
        • Ohashi P.S.
        Clinical blockade of PD1 and LAG3–potential mechanisms of action.
        Nat Rev Immunol. 2015; 15: 45-56
        • Triebel F.
        • Jitsukawa S.
        • Baixeras E.
        • Roman-Roman S.
        • Genevee C.
        • Viegas-Pequignot E.
        • et al.
        LAG-3, a novel lymphocyte activation gene closely related to CD4.
        J Exp Med. 1990; 171: 1393-1405
        • Sedy J.R.
        • Gavrieli M.
        • Potter K.G.
        • Hurchla M.A.
        • Lindsley R.C.
        • Hildner K.
        • et al.
        B and T lymphocyte attenuator regulates T cell activation through interaction with herpesvirus entry mediator.
        Nat Immunol. 2005; 6: 90-98
        • Watanabe N.
        • Gavrieli M.
        • Sedy J.R.
        • Yang J.
        • Fallarino F.
        • Loftin S.K.
        • et al.
        BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1.
        Nat Immunol. 2003; 4: 670-679
        • Sangro B.
        • Gomez-Martin C.
        • la Mata de M.
        • Iñarrairaegui M.
        • Garralda E.
        • Barrera P.
        • et al.
        A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C.
        J Hepatol. 2013; 59: 81-88
        • Duffy A.G.
        • Ulahannan S.V.
        • Makorova-Rusher O.
        • Rahma O.
        • Wedemeyer H.
        • Pratt D.
        • et al.
        Tremelimumab in combination with ablation in patients with advanced hepatocellular carcinoma.
        J Hepatol. 2017; 66: 545-551
        • Sprinzl M.F.
        • Galle P.R.
        Current progress in immunotherapy of hepatocellular carcinoma.
        J Hepatol. 2017; 66: 482-484
        • Shi F.
        • Shi M.
        • Zeng Z.
        • Qi R.-Z.
        • Liu Z.-W.
        • Zhang J.-Y.
        • et al.
        PD-1 and PD-L1 upregulation promotes CD8(+) T-cell apoptosis and postoperative recurrence in hepatocellular carcinoma patients.
        Int J Cancer. 2011; 128: 887-896
        • Gao Q.
        • Wang X.-Y.
        • Qiu S.-J.
        • Yamato I.
        • Sho M.
        • Nakajima Y.
        • et al.
        Overexpression of PD-L1 significantly associates with tumour aggressiveness and postoperative recurrence in human hepatocellular carcinoma.
        Clin Cancer Res. 2009; 15: 971-979
        • Wang B.-J.
        • Bao J.-J.
        • Wang J.-Z.
        • Wang Y.
        • Jiang M.
        • Xing M.-Y.
        • et al.
        Immunostaining of PD-1/PD-Ls in liver tissues of patients with hepatitis and hepatocellular carcinoma.
        World J Gastroenterol. 2011; 17: 3322-3329
        • El-Khoueiry A.B.
        • Sangro B.
        • Yau T.
        • Crocenzi T.S.
        • Kudo M.
        • Hsu C.
        Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial.
        Lancet. 2017; 389: 2492-2502
        • Crocenzi T.S.
        • el-khoueiry A.B.
        • yau T.
        • Melero I.
        • Sangro B.
        • Kudo M.
        • et al.
        Nivolumab in sorafenib-naive and -experienced patients with advanced hepatocellular carcinoma: CheckMate 040 study.
        J Clin Oncol. 2017; 35: 4013
        • Kavanagh B.
        • O'Brien S.
        • Lee D.
        • Hou Y.
        • Weinberg V.
        • Rini B.
        • et al.
        CTLA4 blockade expands FoxP3+ regulatory and activated effector CD4+ T cells in a dose-dependent fashion.
        Blood. 2008; 112: 1175-1183
        • O'Donnell J.S.
        • Long G.V.
        • Scolyer R.A.
        • Teng M.W.L.
        • Smyth M.J.
        Resistance to PD1/PDL1 checkpoint inhibition.
        Cancer Treat Rev. 2017; 52: 71-81
        • Sharma P.
        • Hu-Lieskovan S.
        • Wargo J.A.
        • Ribas A.
        Primary, adaptive, and acquired resistance to cancer immunotherapy.
        Cell. 2017; 168: 707-723
        • Schumacher T.N.
        • Schreiber R.D.
        Neoantigens in cancer immunotherapy.
        Science. 2015; 348: 69-74
        • Twyman-Saint Victor C.
        • Rech A.J.
        • Maity A.
        • Rengan R.
        • Pauken K.E.
        • Stelekati E.
        • et al.
        Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer.
        Nature. 2015; 520: 373-377
        • Emens L.A.
        Cancer vaccines: on the threshold of success.
        Expert Opin Emerg Drugs. 2008; 13: 295-308
        • Buonaguro L, HEPAVAC Consortium
        Developments in cancer vaccines for hepatocellular carcinoma.
        Cancer Immunol Immunother. 2016; 65: 93-99
        • Bald T.
        • Landsberg J.
        • Lopez-Ramos D.
        • Renn M.
        • Glodde N.
        • Jansen P.
        • et al.
        Immune cell-poor melanomas benefit from PD-1 blockade after targeted type I IFN activation.
        Cancer Discov. 2014; 4: 674-687
        • Gabrilovich D.I.
        • Ishida T.
        • Nadaf S.
        • Ohm J.E.
        • Carbone D.P.
        Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function.
        Clin Cancer Res. 1999; 5: 2963-2970
        • Zippelius A.
        • Schreiner J.
        • Herzig P.
        • Müller P.
        Induced PD-L1 expression mediates acquired resistance to agonistic anti-CD40 treatment.
        Cancer Immunol Res. 2015; 3: 236-244
        • Sánchez-Paulete A.R.
        • Cueto F.J.
        • Martínez-López M.
        • Labiano S.
        • Morales-Kastresana A.
        • Rodríguez-Ruiz M.E.
        • et al.
        Cancer immunotherapy with immunomodulatory anti-CD137 and anti-PD-1 monoclonal antibodies requires BATF3-dependent dendritic cells.
        Cancer Discov. 2016; 6: 71-79
        • Ngiow S.F.
        • Young A.
        • Jacquelot N.
        • Yamazaki T.
        • Enot D.
        • Zitvogel L.
        • et al.
        A threshold level of intratumour CD8+ T-cell PD1 expression dictates therapeutic response to anti-PD1.
        Cancer Res. 2015; 75: 3800-3811
        • Wolchok J.D.
        • Saenger Y.
        The mechanism of anti-CTLA-4 activity and the negative regulation of T-cell activation.
        Oncologist. 2008; 13: 2-9
        • Postow M.A.
        • Chesney J.
        • Pavlick A.C.
        • Robert C.
        • Grossmann K.
        • McDermott D.
        • et al.
        Nivolumab and ipilimumab vs. ipilimumab in untreated melanoma.
        N Engl J Med. 2015; 372: 2006-2017
        • Larkin J.
        • Chiarion-Sileni V.
        • Gonzalez R.
        • Grob J.-J.
        • Cowey C.L.
        • Lao C.D.
        • et al.
        Combined nivolumab and ipilimumab or monotherapy in untreated melanoma.
        N Engl J Med. 2015; 373: 23-34
        • Bulliard Y.
        • Jolicoeur R.
        • Zhang J.
        • Dranoff G.
        • Wilson N.S.
        • Brogdon J.L.
        OX40 engagement depletes intratumoural Tregs via activating FcγRs, leading to antitumour efficacy.
        Immunol Cell Biol. 2014; 92: 475-480
        • Guo Z.
        • Wang X.
        • Cheng D.
        • Xia Z.
        • Luan M.
        • Zhang S.
        PD-1 blockade and OX40 triggering synergistically protects against tumour growth in a murine model of ovarian cancer.
        PLoS One. 2014; 9: e89350
        • Sakuishi K.
        • Apetoh L.
        • Sullivan J.M.
        • Blazar B.R.
        • Kuchroo V.K.
        • Anderson A.C.
        Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumour immunity.
        J Exp Med. 2010; 207: 2187-2194
        • Ribas A.
        • Shin D.S.
        • Zaretsky J.
        • Frederiksen J.
        • Cornish A.
        • Avramis E.
        • et al.
        PD-1 blockade expands intratumoural memory T Cells.
        Cancer Immunol Res. 2016; 4: 194-203
        • Lee J.H.
        • Lee J.-H.
        • Lim Y.-S.
        • Yeon J.E.
        • Song T.-J.
        • Yu S.J.
        • et al.
        Adjuvant immunotherapy with autologous cytokine-induced killer cells for hepatocellular carcinoma.
        Gastroenterology. 2015; 148: 1383-1386
        • Butterfield L.H.
        • Ribas A.
        • Dissette V.B.
        • Lee Y.
        • Yang J.Q.
        • la Rocha de P.
        • et al.
        A phase I/II trial testing immunization of hepatocellular carcinoma patients with dendritic cells pulsed with four alpha-fetoprotein peptides.
        Clin Cancer Res. 2006; 12: 2817-2825
        • Palmer D.H.
        • Midgley R.S.
        • Mirza N.
        • Torr E.E.
        • Ahmed F.
        • Steele J.C.
        • et al.
        A phase II study of adoptive immunotherapy using dendritic cells pulsed with tumour lysate in patients with hepatocellular carcinoma.
        Hepatology. 2008; 49: 124-132
        • Fesnak A.D.
        • June C.H.
        • Levine B.L.
        Engineered T cells: the promise and challenges of cancer immunotherapy.
        Nat Rev Cancer. 2016; 16: 566-581
        • Ho M.
        • Kim H.
        Glypican-3: a new target for cancer immunotherapy.
        Eur J Cancer. 2011; 47: 333-338
        • Gao H.
        • Li K.
        • Tu H.
        • Pan X.
        • Jiang H.
        • Shi B.
        • et al.
        Development of T cells redirected to glypican-3 for the treatment of hepatocellular carcinoma.
        Clin Cancer Res. 2014; 20: 6418-6428
        • Sun L.
        • Guo H.
        • Jiang R.
        • Lu L.
        • Liu T.
        • He X.
        Engineered cytotoxic T lymphocytes with AFP-specific TCR gene for adoptive immunotherapy in hepatocellular carcinoma.
        Tumour Biol. 2016; 37: 799-806
        • Llovet J.M.
        • Decaens T.
        • Raoul J.-L.
        • Boucher E.
        • Kudo M.
        • Chang C.
        • et al.
        Brivanib in patients with advanced hepatocellular carcinoma who were intolerant to sorafenib or for whom sorafenib failed: results from the randomized phase III BRISK-PS study.
        J Clin Oncol. 2013; 31: 3509-3516
        • Zhu A.X.
        • Kudo M.
        • Assenat E.
        • Cattan S.
        • Kang Y.-K.
        • Lim H.Y.
        • et al.
        Effect of everolimus on survival in advanced hepatocellular carcinoma after failure of sorafenib: the EVOLVE-1 randomized clinical trial.
        JAMA. 2014; 312: 57-67
        • Zhu A.X.
        • Park J.O.
        • Ryoo B.-Y.
        • Yen C.-J.
        • Poon R.
        • Pastorelli D.
        • et al.
        Ramucirumab vs. placebo as second-line treatment in patients with advanced hepatocellular carcinoma following first-line therapy with sorafenib (REACH): a randomised, double-blind, multicentre, phase 3 trial.
        Lancet Oncol. 2015; 16: 859-870