Highlights
- •Human hepatic progenitors (hCdHs) are generated from adult hepatocytes.
- •HGF is required for chemical reprogramming induced by A83-01 and CHIR99021.
- •hCdHs proliferate for at least 10 passages without losing differentiation potential in vitro.
- •Bipotent hCdHs can repopulate injured liver and acquire functional properties.
Background & Aims
Currently, much effort is directed towards the development of new cell sources for
clinical therapy using cell fate conversion by small molecules. Direct lineage reprogramming
to a progenitor state has been reported in terminally differentiated rodent hepatocytes,
yet remains a challenge in human hepatocytes.
Methods
Human hepatocytes were isolated from healthy and diseased donor livers and reprogrammed
into progenitor cells by 2 small molecules, A83-01 and CHIR99021 (AC), in the presence
of EGF and HGF. The stemness properties of human chemically derived hepatic progenitors
(hCdHs) were tested by standard in vitro and in vivo assays and transcriptome profiling.
Results
We developed a robust culture system for generating hCdHs with therapeutic potential.
The use of HGF proved to be an essential determinant of the fate conversion process.
Based on functional evidence, activation of the HGF/MET signal transduction system
collaborated with A83-01 and CHIR99021 to allow a rapid expansion of progenitor cells
through the activation of the ERK pathway. hCdHs expressed hepatic progenitor markers
and could self-renew for at least 10 passages while retaining a normal karyotype and
potential to differentiate into functional hepatocytes and biliary epithelial cells
in vitro. Gene expression profiling using RNAseq confirmed the transcriptional reprogramming
of hCdHs towards a progenitor state and the suppression of mature hepatocyte transcripts.
Upon intrasplenic transplantation in several models of therapeutic liver repopulation,
hCdHs effectively repopulated the damaged parenchyma.
Conclusion
Our study is the first report of successful reprogramming of human hepatocytes to
a population of proliferating bipotent cells with regenerative potential. hCdHs may
provide a novel tool that permits expansion and genetic manipulation of patient-specific
progenitors to study regeneration and the repair of diseased livers.
Lay summary
Human primary hepatocytes were reprogrammed towards hepatic progenitor cells by a
combined treatment with 2 small molecules, A83-01 and CHIR99021, and HGF. Chemically
derived hepatic progenitors exhibited a high proliferation potential and the ability
to differentiate into hepatocytes and biliary epithelial cells both in vitro and in vivo. This approach enables the generation of patient-specific hepatic progenitors and
provides a platform for personal and stem cell-based regenerative medicine.
Graphical abstract

Graphical Abstract
Keywords
To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Journal of HepatologyAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect
References
- Center-specific graft and patient survival rates: 1997 United Network for Organ Sharing (UNOS) report.JAMA. 1998; 280: 1153-1160
- Stem cell therapy. Use of differentiated pluripotent stem cells as replacement therapy for treating disease.Science. 2014; 345: 1247391
- A concise review of updated guidelines regarding the management of hepatocellular carcinoma around the world: 2010–2016.Clin Mol Hepatol. 2016; 22: 7-17
- Clinical application of stem cells in liver diseases.Korean J Hepatol. 2008; 14: 309-317
- Differentiation and transplantation of human embryonic stem cell-derived hepatocytes.Gastroenterology. 2009; 136: 990-999
- Generation of hepatocyte-like cells from human embryonic stem cells.Cell Transplant. 2003; 12: 1-11
- Recombinant laminins drive the differentiation and self-organization of hESC-derived hepatocytes.Stem Cell Reports. 2015; 5: 1250-1262
- Stage-specific regulation of the WNT/beta-catenin pathway enhances differentiation of hESCs into hepatocytes.J Hepatol. 2016; 64: 1315-1326
- Induced pluripotent stem cell lines derived from human somatic cells.Science. 2007; 318: 1917-1920
- Generation of functional human hepatic endoderm from human induced pluripotent stem cells.Hepatology. 2010; 51: 329-335
- Rapid generation of mature hepatocyte-like cells from human induced pluripotent stem cells by an efficient three-step protocol.Hepatology. 2012; 55: 1193-1203
- Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes.Hepatology. 2007; 46: 219-228
- In vitro hepatic differentiation of human mesenchymal stem cells.Hepatology. 2004; 40: 1275-1284
- In vitro differentiation of human umbilical cord blood-derived mesenchymal stem cells into hepatocyte-like cells.Biochem Biophys Res Commun. 2005; 330: 1153-1161
- Hedgehog signal activation coordinates proliferation and differentiation of fetal liver progenitor cells.Exp Cell Res. 2009; 315: 2648-2657
- The fetal liver as cell source for the regenerative medicine of liver and pancreas.Ann Transl Med. 2013; 1: 13
- Isolation and characterization of adult human liver progenitors from ischemic liver tissue derived from therapeutic hepatectomies.Tissue Eng Part A. 2009; 15: 1633-1643
- Stages based molecular mechanisms for generating cholangiocytes from liver stem/progenitor cells.World J Gastroenterol. 2013; 19: 7032-7041
- Efficient generation of hepatocyte-like cells from human induced pluripotent stem cells.Cell Res. 2009; 19: 1233-1242
- An effective approach to prevent immune rejection of human ESC-derived allografts.Cell Stem Cell. 2014; 14: 121-130
- Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies.Nat Med. 2013; 19: 998-1004
- Variation in the safety of induced pluripotent stem cell lines.Nat Biotechnol. 2009; 27: 743-745
- Rapid loss of Oct-4 and pluripotency in cultured rodent blastocysts and derivative cell lines.Biol Reprod. 2003; 68: 222-229
- The science and ethics of induced pluripotency: what will become of embryonic stem cells?.Mayo Clin Proc. 2011; 86: 634-640
- Some ethical concerns about human induced pluripotent stem cells.Sci Eng Ethics. 2016; 22: 1277-1284
- Hepatocyte differentiation of mesenchymal stem cells.Hepatobiliary Pancreat Dis Int. 2012; 11: 360-371
- Long-term culture of genome-stable bipotent stem cells from adult human liver.Cell. 2015; 160: 299-312
- Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds.Science. 2013; 341: 651-654
- Humanized mice reveal differential immunogenicity of cells derived from autologous induced pluripotent stem cells.Cell Stem Cell. 2015; 17: 353-359
- Cell fate modification toward the hepatic lineage by extrinsic factors.J Biochem. 2017;
- Conversion of terminally committed hepatocytes to culturable bipotent progenitor cells with regenerative capacity.Cell Stem Cell. 2017; 20: 41-55
- Isolation of primary human hepatocytes after partial hepatectomy: criteria for identification of the most promising liver specimen.Artif Organs. 2008; 32: 205-213
- In vivo analysis of Fas antigen-mediated apoptosis: effects of agonistic anti-mouse Fas mAb on thymus, spleen and liver.Int Immunol. 1997; 9: 307-316
- Human hepatic stem cells transplanted into a fulminant hepatic failure Alb-TRECK/SCID mouse model exhibit liver reconstitution and drug metabolism capabilities.Stem Cell Res Ther. 2015; 6: 49
- Robust expansion of human hepatocytes in Fah-/-/Rag2-/-/Il2rg-/- mice.Nat Biotechnol. 2007; 25: 903-910
- HGF/c-Met signaling promotes liver progenitor cell migration and invasion by an epithelial-mesenchymal transition-independent, phosphatidyl inositol-3 kinase-dependent pathway in an in vitro model.Biochim Biophys Acta. 2015; 1853: 2453-2463
- Specific fate decisions in adult hepatic progenitor cells driven by MET and EGFR signaling.Genes Dev. 2013; 27: 1706-1717
- Clinical implications of advances in liver regeneration.Clin Mol Hepatol. 2015; 21: 7-13
- Gene expression in human embryonic stem cell lines: unique molecular signature.Blood. 2004; 103: 2956-2964
- Module map of stem cell genes guides creation of epithelial cancer stem cells.Cell Stem Cell. 2008; 2: 333-344
- MET signalling: principles and functions in development, organ regeneration and cancer.Nat Rev Mol Cell Biol. 2010; 11: 834-848
- EGFR family: structure physiology signalling and therapeutic targets.Growth Factors. 2008; 26: 263-274
- Maturation of fetal hepatocytes in vitro by extracellular matrices and oncostatin M: induction of tryptophan oxygenase.Hepatology. 2002; 35: 1351-1359
- Hepatoblast-like progenitor cells derived from embryonic stem cells can repopulate livers of mice.Gastroenterology. 2010; 139 (e2158): 2158-2169
- Proliferation and differentiation of ductular progenitor cells and littoral cells during the regeneration of the rat liver to CCl4/2-AAF injury.Histol Histopathol. 2002; 17: 65-81
- A compendium of gene expression in normal human tissues.Physiol Genomics. 2001; 7: 97-104
- Connexin 32-mediated cell-cell communication is essential for hepatic differentiation from human embryonic stem cells.Sci Rep. 2016; 6: 37388
- Distinct gene expression and epigenetic signatures in hepatocyte-like cells produced by different strategies from the same donor.Stem Cell Reports. 2017; 9: 1813-1824
- Contribution of hepatic lineage stage-specific donor memory to the differential potential of induced mouse pluripotent stem cells.Stem Cells. 2012; 30: 997-1007
- Small molecules facilitate single factor-mediated hepatic reprogramming.Cell Rep. 2016;
- Efficient generation of functional hepatocyte-like cells from human fetal hepatic progenitor cells in vitro.J Cell Physiol. 2012; 227: 2051-2058
- Ethanol negatively regulates hepatic differentiation of hESC by inhibition of the MAPK/ERK signaling pathway in vitro.PLoS One. 2014; 9: e112698
- Acute toxicity of an anti-Fas antibody in mice.Toxicol Pathol. 1999; 27: 412-420
Article info
Publication history
Published online: September 18, 2018
Accepted:
September 10,
2018
Received in revised form:
August 2,
2018
Received:
October 20,
2017
Identification
Copyright
© 2018 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.