Grand rounds: Autoimmune hepatitis

Palak J. Trivedi1,2, Stefan G. Hubscher1,2,3,4, Michael Heneghan5, Dermot Gleeson6, Gideon M. Hirschfield1,2,3,7,*

Summary

Autoimmune hepatitis is a corticosteroid-responsive liver disease arising consequent to immunogenetic and environmental risk factors. The clinical course reflects relapsing and remitting, hepatocyte targeted immunologic damage, which is countered by reparative responses to cell injury. Appropriate and timely immunosuppressive therapy drives the disease into remission, albeit with inevitable side effects. Many challenges faced in the clinic reflect practice that must capture a heterogeneous disease presentation, course, and treatment response, as well as treatment tolerability. In this Grand Round we appraise the evidence supporting current treatment approaches, address the impact of autoimmune liver disease ‘crossover or overlap’ presentations, explore important clinical correlates to immune-serological classifiers, and discuss the factors influencing choice of alternative therapy in difficult-to-treat situations.

© 2018 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

Clinical vignette

A 19-year old woman (body mass index [BMI] 45.6 kg/m²) presented with a 6-week history of malaise, nausea and progressive jaundice, without features of liver decompensation. Serum tests showed an alanine aminotransferase (ALT) of 592 IU/L (upper limit of normal [ULN] 40 IU/L), bilirubin of 426 µmol/L (ULN 21 µmol/L), serum IgG 20.89 g/L (ULN 16.10 g/L), and seropositivity for anti-nuclear antibodies (ANA; titre 1:100; homogeneous) and anti-smooth muscle antibodies (ASMA). An extended viral screen was negative (hepatitis A, B, C and E; Epstein Barr virus; human immunodeficiency virus and cytomegalovirus). Liver biopsy showed features of acute lobular hepatitis compatible with acute autoimmune hepatitis (AIH). There was moderately severe inflammatory activity including foci of bridging necrosis. No steatosis was evident. On starting oral prednisolone (20 mg daily; 0.25 mg/kg/d), biochemical and immunological remission resulted within 1 month (Fig. 1A). Azathioprine was introduced (when bilirubin <100 µmol/L) alongside gradual tapering of prednisolone.

The patient sustained biochemical and immunological remission for a period of 16 months on azathioprine monotherapy, however she failed to attend clinic visits during the following year. The patient later presented with generalised fatigue, malaise, a markedly elevated serum ALT (628 IU/L, bilirubin 20 µmol/L), and reported poor adherence to treatment over the preceding 10 months. Whilst remission could be induced with oral prednisolone once again (20 mg daily), maintenance proved difficult despite reintroduction of azathioprine (2 mg/kg/d). Ongoing biochemical and immunological activity was evident whenever prednisolone dosage was tapered below 15 mg/day, and azathioprine metabolite monitoring revealed sub-therapeutic 6-thioguanine nucleotide values (178 pmol/8 x 10⁹ cells; normal range 235–450 pmol/8 x 10⁹ cells). The patient was trialled on allopurinol (100 mg daily) to counteract methylmercapturine shunting but unfortunately developed significant side effects (nausea/abdominal pain) leading to allopurinol withdrawal. The patient’s inflammatory indices remained abnormal (ALT 866 IU/L, bilirubin 20 µmol/L, IgG 37.64 g/L). Given the young presenting age and difficult-to-treat disease, a magnetic resonance cholangiogram was performed; however, no features of primary sclerosing cholangitis were evident.

Drug intolerance together with an inability to attain therapeutic thiopurine metabolite values meant that alternative immunosuppression was trialled; first mycophenolate mofetil (MMF; with appropriate counselling regarding contraception) and later tacrolimus. Ultimately however, the patient continued to manifest features of active hepatitis despite therapy, necessitating repeated courses of high-dosage prednisolone (>30 mg daily) to the point of developing Cushing’s syndrome with very difficult glycaemic control. A attempt to switch prednisolone to budesonide was also made; however ongoing inflammatory activity persisted. A repeat liver biopsy obtained 5 years after the initial presentation showed features of chronic hepatitis with moderate interface hepatitis and bridging fibrosis. There was also ongoing lobular inflammation, which was moderate in severity, with foci of centrilobular necrosis. Therefore, the patient received intravenous rituximab. This led to successful biochemical remission until the time of writing (approximately...
Autoimmune hepatitis is characterised by chronic, frequently relapsing immune-mediated liver injury, which leads to a varying severity of hepatitis and a risk over time of end-stage liver disease.

How to guide decision making in use of therapy?

AIH is a persistent and relapsing immune-mediated liver injury characterised by (often chronic) hepatitis of varying severity, which carries a significant risk of developing into end-stage liver disease unless treated by timely and effective therapy. Our understanding of aetiological drivers is incomplete, but mixed environmental, genetic and epigenetic drivers of inflammation are all presumed relevant. For example, strong human leucocyte antigen (HLA) associations exist for disease risk, and non-HLA genetic variants (some rare but functional e.g. in the genes AIRE, GATA-2, CTLA-4, others common e.g. in the gene locus for SH2B3 but without a clear-cut coding impact) have been identified. The paradigm of drug-induced AIH, exemplified by nitrofurantoin, and the identification of HLA as a strong risk factor in many drug-induced liver injuries, supports the role of environmental triggers in precipitating immune injury. Furthermore, the insight that indeed other autoimmune diseases are not as frequent in family members as initially expected indicates the importance of environmental triggers. Ongoing research is focussed on harnessing a better understanding of the ongoing subtle, but deleterious changes in immunoregulation that represent disease drivers, as well as therapeutic targets.5

Key points
Autoimmune hepatitis is characterised by chronic, frequently relapsing immune-mediated liver injury, which leads to a varying severity of hepatitis and a risk over time of end-stage liver disease.

Fig. 1. Clinical course and patterns of injury in autoimmune hepatitis. (A) Timeline graph of laboratory parameters from the case is shown during the patient’s initial presentation and phase of treatment, with black arrowheads indicating the start date of oral prednisolone at 20 mg once daily, and white arrowhead the introduction of azathioprine. (B) A timeline graph of laboratory parameters from the same patient, who presented again after a period of non-attendance to clinic. Black arrowhead indicates re-initiation of prednisolone and white arrowhead azathioprine. Single and double asterisks indicate the duration of MMF and tacrolimus therapy (without azathioprine), respectively, and the black arrow the first infusion of rituximab. (C) Representative images showing typical features of chronic AIH. From left to right: (i) a portal tract containing a dense lymphoplasmacytic infiltrate associated with moderate interface hepatitis; (ii) interface hepatitis is associated with periportal hepatocyte rosetting and focal emperipolesis; (iii) there is extensive lobular dissection by delicate strands of fibrous tissue, which surround small clusters of hepatocytes forming rosettes (Haematoxylin van-Gieson stain). (D) Representative sections showing typical features of acute AIH. From left to right: (i) a portal-cell rich portal inflammatory infiltrate; (ii) lobular hepatitis with prominent plasma-cell rich centrilobular inflammation associated with bridging necrosis; (iii) severe lobular hepatitis with almost panacinar necrosis and only occasional small groups of surviving hepatocytes. (E) Evolution of histological changes from a patient having initial diagnosis of AIH that progressed to a PSC predominant phenotype over a 3-year period, necessitating transplantation due to chronic liver failure and recurrent cholangitis. (i) The first biopsy obtained at diagnosis shows features of acute AIH with prominent lobular inflammation. There is diffuse spotty lobular inflammation associated with hepatocyte ballooning and lobular disarray. The portal tract also contains a moderately dense infiltrate of inflammatory cells. (ii) The second biopsy obtained (750 days) illustrates progression to more typical features of chronic hepatitis with predominant portal inflammation. The portal tract contains a moderately dense infiltrate of mononuclear inflammatory cells. There is focal, mild interface activity but no significant fibrosis is present. Lobular inflammation has resolved. (iii) The hepatectomy specimen obtained at transplantation (2,982 days) shows a fibro-obliterative duct lesion typical of PSC. A large portal tract contains a nodule of fibrous tissue related to an obliterated bile duct, and peribiliary glands are visible in the bottom right. AIH, autoimmune hepatitis; ALT, alanine aminotransferase; MMF, mycophenolate mofetil; PSC, primary sclerosing cholangitis.
Determining activity, severity and chronicity of disease

Approaches to treatment derive from historic placebo-controlled trials, in which patients with untreated moderate-severe AIH (aspartate aminotransferase [AST] >5xULN, globulins >2xULN, liver biopsy showing confluent necrosis) had a very poor prognosis, with 5- and 10-year survival of 50% and 10%, respectively. By contrast, 10-year transplant-free survival rates were approximately 90% in treated patients. Although, we acknowledge that the intent of treatment is usually focussed on much longer term outcomes.

Current guidelines recommend liver biopsy at the time of first presentation. Liver biopsy is a critical tool for identifying features that are supportive of diagnosis, determining disease severity (inflammatory activity and fibrosis stage), and discriminating acute vs. chronic presentations (Fig. 1C and 1D). Classical histological findings of chronic AIH include lymphoplasmacytic infiltration, predominantly located in portal tracts and associated with varying degrees of interface hepatitis. Other typical features of AIH, although not universally present, are rosette formation, emperipolesis and plasma-cell enrichment. Interface hepatitis is associated with the development of periportal fibrosis, which may progress to bridging fibrosis and ultimately lead to cirrhosis. By contrast, lobular inflammation predominates in patients with an acute presentation, in addition to typical hepatocyte ballooning, lobular disarray and spotty hepatocyte apoptosis/necrosis. More severe cases may be associated with extensive hepatocyte necrosis, ranging from confluent necrosis through bridging necrosis to panacinar or multiacinar necrosis (Fig. 1D). The latter is typically seen in cases presenting with signs of acute liver failure. Similar changes can also be seen in cases of acute viral or drug-induced hepatitis.
Features favouring AIH as a likely cause of acute hepatitis include prominent portal inflammation with interface hepatitis (resembling changes seen in chronic AIH), a plasma-cell rich inflammatory infiltrate, lymphoid aggregates and centrilobular accentuation of inflammation (central periportalitis). Emperipolesis and hepatocyte rosettes are less helpful in diagnosing AIH with an acute presentation as these changes are also frequently present in other causes of acute lobular hepatitis.11

The mononuclear infiltrate of AIH tends to be predominated by CD4+ T-cells that localise to the periportal areas, with hepatocyte damage thought to include apoptosis induction and the direct effects of the cytokines interferon-γ, tumour necrosis factor α and interleukin (IL)-17. Disease-specific increases of IL-17 in both the peripheral blood and liver have been reported, and it is proposed that differentiation into T\textsubscript{h}17 as opposed to regulatory T-cell (T\textsubscript{reg}) phenotypes underlie the pro-inflammatory nature of immune-mediated liver injury. CD8+ T-cells, by contrast to their CD4+ counterparts, more often localise to the areas of interface activity, and are overall less prevalent than in other causes of hepatitis. Nevertheless, CD8+ T-cells are highly activated in AIH, demonstrating an upregulation of several cytotoxic molecules including granzyme B and perforin, and resistance to the anti-proliferative effects of T\textsubscript{reg} in vitro. Plasma cells, which develop from activated B-cells, are also numerous in AIH livers. The observed correlation between intraportal B-cell numbers and serum IgG values, together with case series supporting the efficacy of the B-cell depleting agent rituximab in AIH lend further support to their role in disease pathogenesis. This aligns with an increased understanding of the role B-cells play in regulating T-cell function (B-cell deletion favouring T\textsubscript{reg} function).5

High-risk disease
At least one-third of adults have cirrhosis at diagnosis,8,9 conferring a heightened mortality risk and/or need for transplantation (hazard ratio 21.25).14 Offering treatment to avoid transplantation is deemed mandatory in all patients with advanced fibrosis, and for those with established, compensated liver cirrhosis and persistent inflammatory activity.6,7 By contrast, when patients present with overt hepatic decompensation, then the risk vs. benefit is less apparent. If experience and expertise are not available locally, then immunosuppression should only be administered following discussion with a transplant unit and when inflammatory activity is histologically overt.

The merits of immunosuppression for patients with inactive (“burned out”) cirrhosis are contentious, given that inflammatory activity (hepatitis) is a prerequisite for diagnosis. In any event, the impact on overall outcome is generally thought to be very low for this subgroup, leaving just the risk of drug-related side effects. It is therefore reasonable for the patient presenting with ‘burned out’ AIH to receive no direct immunosuppression, but they must still be monitored and surveyed.

Acute-severe (AS)-AIH presentations, and in particular those with fulminant hepatic failure represent an additional group of patients who may not necessarily benefit from immunosuppression. AS-AIH is defined by an acute onset of symptoms to presentation of <26 weeks, associated with significant hepatic dysfunction (international normalized ratio ≥1.5) that develops at any time during the index presentation, despite the absence of chronic disease features on liver histology.12

Important in managing such patients is the careful attention to prevention and treatment of intercurrent sepsis and management in the context of expectant transplantation. The short-term mortality approaches ~20%, with 60% of patients needing a liver transplant.12 Thus, it is advised that immunosuppression only be trialled in close liaison with a transplant unit, whilst seeking early evidence of therapeutic response (e.g. falling bilirubin) or lack thereof.

Mild disease
The benefits of treatment in those classified as ‘asymptomatic’ are also debated. The 10-year survival in this group is 80% based on historical data, therefore mirroring that of the overall AIH population. However, an Italian group reported that compared to patients with symptomatic presentations (n = 215), patients with asymptomatic disease (n = 90) exhibited lower mean serum ALT values (7 vs. 23xULN), lower serum bilirubin (1.4 vs. 8.6 mg/dl) and milder histological disease activity (histological activity index [HAI]: 7 vs. 9). Nevertheless, development of cirrhosis (18.5% vs. 12.2%), and event-free survival (events defined as any episode of decompensation, hepatocellular carcinoma, listing for liver transplantation or death) developed at a similar rate in asymptomatic vs. symptomatic patients (22% vs. 24%).13 Furthermore, 25% of asymptomatic patients may go on to develop symptoms during follow-up with fluctuating histological inflammatory activity; while improvements in biochemical indices may occur spontaneously, resolution of inflammation is less frequent in untreated patients (12% vs. 63%).14 These data indicate that an absence of symptoms must not be a factor when determining whether or not to treat patients. In fact, data to support empirical treatment in this group stems from data in patients of older age, 25% of whom are asymptomatic yet more likely to be cirrhotic at presentation (odds ratio [OR] 1.58).15 Elderly patients respond well to treatment, and relapse less commonly following treatment withdrawal than patients of younger age at onset (OR 0.38).15,16 Equally, non-severe presentations with mild interface hepatitis and modest biochemical changes (normal serum bilirubin, serum amino-transferase values <5xULN) may not necessarily
Table 1. Holistic care of the patient with autoimmune hepatitis.

<table>
<thead>
<tr>
<th>Domain</th>
<th>Comments</th>
</tr>
</thead>
</table>
| Timely and individualised therapy | • Treatment regimens vary between guidelines, and in practice must be tailored to underlying inflammatory activity, disease severity and patient tolerability.
• Elderly patients: may respond to lower low dosages of corticosteroids (10–20 mg prednisolone, or equivalent) to enter remission.
• Pregnancy: spontaneous disease remission common, but disease relapse often manifests in the post-partum period particularly for those not on therapy during pregnancy (50% vs. 26% for women on immunosuppression).
• Acute onset, fulminant presentations: less favourable response to corticosteroids (~50%) and should be managed in the context of expectant transplantation (60% needing transplantation; 20% mortality).
• Failure to induce remission, or loss of prior response in the young patient must prompt investigation of ‘evolving’ sclerosing cholangitis.
| Maintaining adherence to treatment | • Stratified, personalised approach, best attained through good continuity of care.
• Specialist nurses play a vital role in managing chronic disease. Optimised care provision through evaluating, monitoring and education; in addition to facilitating an individualised approach to treatment and follow-up that is of greatest efficacy and lowest burden to patients.
| Symptomatology and extrahepatic manifestations | • Protective measures for all those on long-term corticosteroids. Consider budesonide as first line in non-cirrhotic patients with features of metabolic syndrome and/or diabetes mellitus.
• Side effects of thiopurines can lead to treatment discontinuation in 5% to 19% of patients. Improved tolerability can be achieved by starting with lower dosages and titrating according to thiopurine metabolite levels.
• Fatigue and arthralgia are recognised symptoms, which may correlate with underlying disease activity.
• Pruritus is uncommon compared to that found in chronic cholestatic liver diseases, but may herald an ‘evolving’ sclerosing cholangitis.
| Surveillance of complications | • Bone density measurements at the onset of corticosteroid therapy.
• Hepatocellular carcinoma screening and surveillance for patients with established liver cirrhosis.
• Check for gastroesophageal varices according to Baveno guidelines.
| Side effects of therapy | • Monitoring of blood glucose and bone density recommended at initiation of systemic corticosteroid therapy.
• Serum AST/ALT, bilirubin, and alkaline phosphatase levels are recommended periodically.
• Monitoring strategy under thiopurine therapy is largely extrapolated from data in inflammatory bowel disease (IBD). Checking thiopurine methyltransferase (TPMT) is logical prior to commencement of therapy, and dosing adjusted accordingly, albeit all patients must be monitored on therapy.
• Checking full blood count and renal function is recommended at for example weeks 2, 4, 8 and 12, and then 3-monthly thereafter for patients under therapy with thiopurines, mycophenolate and tacrolimus; principally to screen for cytopenia and cell dyscrasias.

What constitutes effective therapy?
Treatment goals need to be personalised; resolution of liver biochemistry can be achieved in ~75% of patients, of whom ~80% also attain normal serum immunoglobulin values. Between 39% to 65% of patients normalise serum ALT within 6 months of starting treatment (93% at 1 year). Failure to attain normal aminotransferases by 6–12 months confers an increased risk of liver transplantation/liver-related death (hazard ratio [HR] 4.8); whereas complete biochemical and immunological remission (serum aminotransferases, bilirubin and IgG values all ≤ULN) is associated with reduced histological disease activity, regression of liver stiffness as assessed by transient elastography, and can predict histological fibrosis regression after a median of 5.5 years (range 1.0–9.7 years; relative risk [RR] 3.6). However histological improvement lags behind normalisation of laboratory values by at least 6–12 months, and failure to attain remission histologically despite doing so biochemically is associated with >2-fold increased risk of progression to transplantation and all-cause mortality.

Inducing remission
Because of their efficacy, corticosteroids, either prednisolone or budesonide, are the mainstay of treatment for AIH, inducing remission in most patients. Corticosteroids alone or in combination with azathioprine are considered equally effective, although an individualised approach is needed to ensure the best long-term outcomes for patients. Combination therapy can be instituted either at diagnosis, or quite reasonably with a slight delay of 2–4 weeks before starting azathioprine, which is without detriment to long-term disease control.

Many treatment algorithms have been proposed, but there is wide variation in practice, which is a reflection of disease heterogeneity but equally a lack of real-world consensus on the value of intensive immunosuppression to the individual patient (Table 1). A brief report from Hamburg suggested that high prednisolone dosages result in more rapid normalisation of serum aminotransferases, although whether they are universally necessary in view of side effects (and equally whether they confer better long-term outcomes) is unclear, particularly given the heterogeneity in

follow a sedentary course, and mild AIH can be interspersed with phases of severe activity that can be aggressive.
disease presentation and challenges in identifying patients most in need of ‘high-intensity’ immunosuppression at baseline. As the patient in our vignette shows, a severe presentation is not correlated with an absolute need for high-dose prednisolone to induce good disease control. Moreover there is widespread concern about weight gain and cosmetic impact, in addition to the burden of depressive symptoms, related treatment non-adherence, and reduced health-related quality of life associated with corticosteroids. Important factors related to dose and corticosteroid choice must include the presence of obesity, metabolic bone disease, diabetes, hypertension or concern over cosmetic side effects of prednisolone, as well as clinician concern regarding adherence. Budesonide has a higher affinity for the glucocorticoid receptor than prednisolone but undergoes over 90% hepatic first pass metabolism. The resulting catabolites are devoid of glucocorticoid activity, which limits corticosteroid-related side effects. Despite improved tolerability with budesonide, advanced liver disease or porto-systemic shunts increase the risk of corticosteroid-induced side effects as a result of altered hepatic clearance and increased systemic availability. For this reason, the labelled indication excludes individuals with cirrhosis. In the context of severe presentations of AIH, or as switch-over therapy for side effects, more efficacy data are needed.

Azathioprine monotherapy is largely inappropriate for inducing remission, given its slow onset of action and poorer patient outcomes compared to prednisolone alone or prednisolone/azathioprine in combination. However, there are very occasional patients with mild disease activity, no liver fibrosis, and good clinical or personal reasons for avoiding corticosteroids, in whom monotherapy with azathioprine from the outset, with equivalent treatment goals, can be considered.

Maintaining remission

In most, corticosteroids are combined (once an initial response is confirmed) with long-acting immunomodulators during the induction phase. Whilst drug-induced hepatotoxicity is uncommon, phased introduction of azathioprine is a pragmatic approach for managing and traversing the side effects of treatment. It is also notable that outcome data in a non-transplant specialist programme identified non-treatment with azathioprine as a risk factor for progression to liver transplantation and liver-related death (HR 3.96), as well as all-cause mortality (HR 2.71).

Once achieved, biochemical remission can be maintained in the majority of patients with prednisolone (gradually tapered to 7.5–12.5 mg/day), alongside azathioprine 1–2 mg/kg/day. Higher dosages of azathioprine (2 mg/kg/day) may be needed when bridging to monotherapy, but this can be tailored to individual response. At higher doses the risks of azathioprine induced malignancy, especially in those over the age of 60, are an important consideration as highlighted by the recent literature on inflammatory bowel disease. Thiopurine metabolite monitoring may have a role, but at present is usually limited to those in need of intensified treatment or where drug adherence is a concern.

Whilst disease control can be achieved and sustained with a very small dose of corticosteroids, prednisolone monotherapy has a limited role in maintaining remission. This approach is largely reserved for patients intolerant or refractory to immunomodulators, and for patients in whom the avoidance of side effects from therapies such as azathioprine may be of greater concern. In such situations, it is occasionally reasonable to use monotherapy with corticosteroids from the very outset with no planned addition of azathioprine or equivalent. In the authors’ experience, this is often in fairly elderly patients, for whom excellent response to treatment can be sustained with very modest prednisolone dosages (e.g. 2.5 mg or 5 mg per day). The efficacy and long-term safety of budesonide maintenance monotherapy is also currently unknown, albeit anecdotally it can be considered in selected patients.

Duration of therapy

Although there is no consensus on optimal duration, current guidelines recommend treatment be continued for long enough to make histological resolution 'likely'. Twelve months is probably inadequate given the relatively low histological remission rate. However, for non-cirrhotic patients with type-I AIH, who are soluble liver antigen (SLA) negative, a finite treatment duration with corticosteroids for 18–24 months and azathioprine for 3–5 years, prior to a single off therapy trial provided aminotransferases and IgG have remained normal during this time, is reasonable.

Tapering of corticosteroids without repeat liver biopsy, provided full biochemical and immunological remission has been attained, is based on data showing a correlation with lower histological activity (HAI <4) in 18/22 patients prospectively followed-up over a median of 5.6 years. However, ~45% of patients who maintain a serum ALT and globulin value within the normal range will have persisting histological activity (HAI ≥4). This is associated with a heightened need for liver transplantation and increased all-cause mortality (HR 3.1). However, it is not known whether treatment intensification is beneficial.

Between 41–55% of patients eventually develop an episode of relapse (an increase in serum ALT ≥3xULN ± an increase in serum IgG >20 g/L) after attaining remission, despite ongoing therapy. The odds appear to be lower in patients of older presenting age (≥18 years; OR 0.29) and heighten in those who are HLADRB1*04:01 positive.
(OR 2.3). Disease relapse and loss of remission (increase in serum ALT >ULN) are a particular issue after tapering or cessation of treatment. The Dutch AIH working group have reported a relapse rate of 59%, 81% and 88% at 1, 3 and 5 years, respectively, even when treatment was tapered and/or discontinued after clinical and biochemical remission had been sustained for ≥2 years.29 The incidence of relapse appeared greater when tapering of medication was trialled in younger patients (age <45 years) and those still requiring combination therapy (overall rate of relapse or loss of response: 59% vs. 19% in prednisolone/azathioprine combination and azathioprine monotherapy arms, respectively). Azathioprine monotherapy is as effective at maintaining remission as dual therapy with prednisolone/azathioprine and also associated with fewer side effects.26 It is therefore common practice to use azathioprine monotherapy in patients who have attained sustained remission (approximately 18–24 months) without prior history of relapse.

Relapse is more likely to occur at treatment withdrawal in the event persistent histological inflammatory activity is present (HAI >3). Thus it has been advised that biopsy be performed routinely for all patients prior to trialling cessation of therapy.7 However, data from a small European cohort showed that approximately 50% of patients still require re-treatment despite having an absence of inflammatory activity (HAI ≤3). Further insights into the predictive components of liver histology stem from a study in the United States (n = 88), which indicated that the persistence of plasma cells in the portal tracts was the sole critical factor in determining the risk of relapse, whilst median HAI was no different between relapers and non-relapers.27

Whilst it is a valid perspective to biopsy prior to treatment withdrawal, a paradigm that is more selective in the use of liver biopsy is equally reasonable. The important clinical practice point is that all patients who stop therapy are monitored closely for relapse. The nature of clinical practice is also relevant: clinicians managing large cohorts of patients with AIH may be better placed to identify heterogeneity in disease course such that liver biopsy, for example prior to treatment withdrawal, is less frequently of clinical utility.

Populations with added clinical challenges
Development of PSC and relevance to clinical practice

Whilst a single diagnostic test does not exist for AIH,1 a series of weighted criteria devised by the International AIH Group (IAIHG) can facilitate some uniformity in diagnosis. At the time of development, the principled intent was to ensure comparability of patient populations in clinical research. Therefore, the IAIHG scoring system should not be applied as a discriminative diagnostic index implying that manifestations of AIH are somehow unique and can be siloed within disease-specific borders. Manifestations that are also common to primary sclerosing cholangitis (PSC) and primary biliary cholangitis, include interface hepatitis, presence of autoantibodies and elevated serum immunoglobulin concentrations.28 Overlap ‘features’ be they biochemical, serological, histological or radiological, are hence frequently shared across all 3 autoimmune liver diseases, with some less categorical and objective than others.

Accepting these caveats, the IAIHG propose that “although patients may have overlapping features across the spectrum of autoimmune liver injury, individual cases should be categorised according to the predominant disease entity; and that the IAIHG scoring system should not be used to diagnose distinct subgroups of patients.”29 An appraisal of disease phenotype must be performed longitudinally rather than at a single point in time, which is particularly relevant for those of younger presenting age. Of note, ~50% of paediatric patients with typical biochemical and immunological features of AIH can manifest a cholangiographic phenotype indicative of sclerosing cholangitis.30 This group enter biochemical remission less often than those with a ‘pure’ AIH phenotype (83% vs. 100%), and experience relapses characterised by elevations in serum gamma glutamyltransferase (GGT).30 Cholangiographic abnormalities also evolve in 10–24% of adult patients with AIH31,32 and as expected, are more frequent in patients of younger presenting age (24 vs. 39 years in 1 study). The prevalence of features of AIH within the International PSC Study Group ([IPSCSG; n = 7,121], was approximately 7% (n = 470) of patients with PSC.33 However, with no codified diagnostic approach, the proportion of overlap cases relative to PSC varied widely between contributing centres, being heavily influenced by location (Australia, 2%; North America, 3%; Western Europe, 6%; Northern Europe, 7%; Southern Europe, 8%; Central Europe, 10%).

Patterns of liver biochemistry in PSC are influenced by age at presentation, and a ‘hepatitic’ laboratory profile does not automatically equal AIH overlap. In our programme we have shown a negative correlation between presenting age vs. serum alkaline phosphatase (ALP, Spearman’s rho 0.247; p = 0.009) and vs. the serum AST:ALP ratio in PSC specifically (Spearman’s rho: −0.253; p = 0.007).34 Moreover, >50% of patients with PSC presenting between 18 to 25 years of age displayed a serum AST value >2xULN; vs. ≤30% in groups aged >25–43 years, 43–55 years and >55 years (n = 112 overall; p = 0.03).
The development of PSC must be considered in patients with AIH who are poorly responsive to immunosuppressive therapy, although as the radiological hallmark of PSC (beading and stricturing of the biliary tree on cholangiography) is a late manifestation, the exact interval between onset of AIH and PSC is difficult to determine. Key to practice is the fact that no significant differences in transplant-free survival were seen in the IPSCSG cohort which compared adult patients with classical PSC vs. those with PSC/AIH (incidence rate of liver transplant/mortality: 5.62 vs. 4.70 per 100 patient-years, \(p = \text{n.s.}^{33} \)). This observation was mirrored in a multicentre paediatric study of 781 children with PSC (5-year event-free survival: 88% vs. 90%)\(^{37} \).

As AIH evolves to PSC clinically, typical histological features of AIH such as portal inflammation and interface tend to subside, likely reflecting successful therapeutic suppression of inflammation, and features of chronic biliary disease become more prominent. The observed changes include bile duct loss, ductular reaction often associated with a ‘biliary pattern’ of interface activity and fibrosis, and features of chronic cholestasis including the accumulation of copper and copper-associated protein in perportal hepatocytes. Classical ‘onion-skin’ foci of periductal fibrosis mainly involve medium sized ducts and are thus seen infrequently in needle biopsy specimens. Liver biopsy is still helpful in this setting, both in identifying the presence of ongoing inflammation, and in detecting features of chronic biliary disease, which may prompt additional investigations and provoke alternative management strategies (Fig. 1E).

A longitudinal approach to care must be adopted when managing autoimmune liver disease, focussing on clarity and accuracy in disease definitions and the rationale for treatment. This is particularly relevant when immunosuppression is offered to patients with PSC and overlapping AIH features; an intervention not supported by evidence of benefit. Conventional remission criteria for AIH cannot be applied to patients with PSC, who may develop progressive liver disease irrespective of whether they normalise AST, ALT and/or immunological parameters.\(^{38} \)

Key points

A longitudinal approach to clinical management must be adopted for autoimmune liver disease, with a repeated focus on the clarity and accuracy of current disease manifestations and the rationale for treatment, alongside the risks of interventions.

Phenotypic differences between adult-onset AIH type-I and type-II

Attempts to sub-classify AIH based on serological phenotypes are frequently described, and the nature of autoantibodies can fluctuate before and after immunosuppressive therapy.\(^{39} \) Approximately 65% of all patients will test positive for ANA and/or ASMA, which although non-disease specific are considered representative of type-I AIH.\(^{40} \) By contrast, anti-liver kidney microsomal (LKM)-1 and anti-liver cytosol (LC)-1 antibodies typify type-II disease. Across some settings, the latter accounts for \(~25\%\) of AIH in children, and importantly, liver cirrhosis may already be established in \(60\%\) of patients at the time of diagnosis. Early reports from the 1980s also suggested that this group of children more often present with fulminant hepatic failure than contemporaries with type-I AIH.

Seropositivity against soluble liver antigen/liver pancreas antigen (anti-SLA/LP) is found in \(22\%\) of patients with AIH,\(^{43} \) mostly in type-I disease. Indeed, \(~90\%\) of anti-SLA/LP cases will also test positive for ANA and or ASMA, whereas coexistence with anti-LKM is rare. Anti-SLA/LP positivity may characterise a high-risk group for disease progression (HR for liver transplantation/death \(4.25^{43} \)), although this observation needs validation.\(^{39} \)

Type-I AIH contributes to \(~90\%\) of adult cases, with an average ‘quoted’ diagnosis age between 36–56 years, supporting the concept of 2 patterns of age-related presentation.\(^{8,22} \) By contrast, type-II AIH contributes to fewer (2–10%) adult cases, although treatment paradigms do not tend to differentiate between serological phenotypes.\(^{9,41} \) Nevertheless, therapeutic failures defined as the presence of clinical/biochemical deterioration despite medication, appear to be less common in ANA-positive vs. negative patients (7% vs. 24%, \(p = 0.016^{48} \)).

The UK multicentre audit confirmed that type II disease was more commonly associated with liver cirrhosis at diagnosis (47% vs. 25%; \(p = 0.04 \)). This is in contrast to an Italian group, who found no differences when comparing age- and sex-matched cohorts with regard to the frequency of cirrhotic presentations (12% vs. 19%, \(p = 0.456 \)), proportion attaining complete treatment response (50% vs. 60%, \(p = 0.464 \)), null responders (12.5% vs. 15%, \(p = 0.788 \)) and the number who relapse (81% vs. 78%, \(p = 0.961 \)).\(^{42,43} \) The nature of IgG elevation may also differ in adults and can be misleading when assessing and monitoring the severity of disease. Indeed, in our programme serum IgG values were rarely elevated in adult-onset LKM-1 positive AIH, even at the peak of hepatitis activity (Table 2).

Pregnancy

Pregnancy and AIH is another important area for discussion, and post-partum disease flares can be significant irrespective of AIH subtype, occurring in 25–30% of pregnancies. Disease flares are linked to poor disease control in the year prior to pregnancy, an absence of therapy whilst pregnant, and a significantly increased risk of hepatic decompensation and increased need for neonatal admission to special care baby units.\(^{44} \) It is therefore critical that immunosuppression be continued during pregnancy and into the post-partum period, during which more active disease can be anticipated, and intensified monitoring and intervention offered as appropriate.
How is second-line therapy applied in clinical practice?

Defining treatment failure

Poor adherence is the first consideration during incidents of therapeutic failure, although deviation from the expected clinical course also warrants re-evaluation of diagnosis, exclusion of sclerosing cholangitis, and potentially drug malabsorption from poorly-controlled coeliac disease. Assumption adherence and a correct diagnosis, patients who do not show clinical or laboratory improvement within 6 months of starting first-line therapy (10–15%) are deemed unresponsive, whereas those who deteriorate by any clinical or laboratory parameter despite compliance (~9%) are considered treatment failures. Of concern, failure to normalise serum ALT within 6–12 months of presentation is associated with a >5-fold increased risk of liver-related death or transplantation and such situations justify the reinstatement of prednisolone (variable dose depending on clinical setting) alone or in conjunction with azathioprine (2 mg/kg/day). High dose corticosteroids, if chosen, are maintained for at least 1 month. Thereafter, the corticosteroid dose may be reduced according to clinical response.

Continued deterioration despite the above measures may be an indication for alternative therapies but obtaining histological evidence to confirm ongoing inflammatory disease is advised to ensure accurate diagnosis. This can help stratify treatment decisions, wherein the threshold to trial salvage therapies or triage to liver transplant assessment may be guided by the acuteness and severity of injury in the correct clinical context. Mostly, however, alternative therapies are needed because of drug intolerability (side effects or complications) rather than corticosteroid-dependency or non-response to primary therapy. Whilst the goals of treatment remain unchanged, irrespective of the therapeutic paradigm selected, there are no randomised controlled trials to support any of the potential second-line treatments used in clinical practice.

Optimising thiopurine delivery

Mercaptopurine (MP) has recently been proposed as an alternative therapeutic option for azathioprine intolerance, although evidence for its efficacy in non-responders is lacking. In a study of 20 patients with azathioprine intolerance, 75% exhibited biochemical response to MP; 8 having complete remission and 7 a partial improvement in liver biochemistry. The remaining 5 patients ceased MP therapy in view of ongoing intolerance to thiopurines. Elevated concentrations of the metabolite 6-methylmercaptopurine have been associated with the development of hepatotoxicity and therapeutic drug failure, particularly when coexistent with lower levels of 6-thioguanine nucleotides. Co-administration of allopurinol alongside ‘low-dose’ thiopurines has been shown to redirect metabolism in 1 small study, with patients having prior dose-limiting intolerance (n = 3), non-response (n = 3) or loss of response to standard thiopurine treatment. All 8 patients normalised serum ALT within 1 month, in line with a reduction in red blood cell 6-MMP concentrations. Although limited by size, these findings are encouraging and require long-term validation in a larger, more homogeneous cohort of patients with AIH.

Mycophenolate mofetil

Mycophenolate mofetil is perhaps the most well-studied therapeutic alternative to azathioprine; and although unlicensed, is accepted as second-line treatment by most. Collectively, data surrounding MMF indicates use as a possible alternative for maintaining remission, largely reserved for instances when patients are intolerant to azathioprine as opposed to non-responders. However, approximately 10–37% of patients discontinue MMF in view of adverse events, particularly

Table 2. Presenting features of adult-onset anti-LKM-1 positive autoimmune hepatitis.

<table>
<thead>
<tr>
<th>Year of diagnosis</th>
<th>Sex</th>
<th>Diagnosis (yrs)</th>
<th>Presentation</th>
<th>Peak serum ALT (IU/L)</th>
<th>Steroid-responsive (Y/N)</th>
<th>Peak serum IgG (g/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>Male</td>
<td>21</td>
<td>Acute hepatitis with jaundice</td>
<td>1,705</td>
<td>N</td>
<td>13.10</td>
</tr>
<tr>
<td>2003</td>
<td>Female</td>
<td>22</td>
<td>Post-partum jaundice</td>
<td>1,003</td>
<td>Y</td>
<td>32.77</td>
</tr>
<tr>
<td>2004</td>
<td>Female</td>
<td>16</td>
<td>Fatigue</td>
<td>885</td>
<td>Y</td>
<td>15.68</td>
</tr>
<tr>
<td>2005</td>
<td>Female</td>
<td>28</td>
<td>Fulminant liver failure</td>
<td>565</td>
<td>Y</td>
<td>14.61</td>
</tr>
<tr>
<td>2006</td>
<td>Female</td>
<td>18</td>
<td>Fulminant liver failure</td>
<td>1,102</td>
<td>N/A; urgent liver transplant</td>
<td>18.01</td>
</tr>
<tr>
<td>2007</td>
<td>Female</td>
<td>24</td>
<td>Post-partum jaundice</td>
<td>780</td>
<td>Y</td>
<td>12.22</td>
</tr>
<tr>
<td>2010</td>
<td>Female</td>
<td>19</td>
<td>Acute hepatitis with jaundice</td>
<td>108</td>
<td>N</td>
<td>14.25</td>
</tr>
<tr>
<td>2011</td>
<td>Male</td>
<td>33</td>
<td>Abdominal pain</td>
<td>250</td>
<td>Y</td>
<td>10.63</td>
</tr>
<tr>
<td>2011</td>
<td>Female</td>
<td>18</td>
<td>Acute hepatitis with jaundice</td>
<td>1,031</td>
<td>Y</td>
<td>11.61</td>
</tr>
<tr>
<td>2012</td>
<td>Female</td>
<td>27</td>
<td>Acute hepatitis with jaundice</td>
<td>108</td>
<td>Y</td>
<td>14.91</td>
</tr>
<tr>
<td>2013</td>
<td>Female</td>
<td>24</td>
<td>Post-partum jaundice</td>
<td>698</td>
<td>Y</td>
<td>14.16</td>
</tr>
<tr>
<td>2013</td>
<td>Female</td>
<td>33</td>
<td>Decompensated liver cirrhosis</td>
<td>115</td>
<td>N</td>
<td>15.99</td>
</tr>
</tbody>
</table>

ALT, alanine aminotransferase; anti-LKM-1, anti-liver kidney microsomal-1 antibody.

* Incident cases of anti-LKM-1 positive autoimmune hepatitis seen in the Birmingham liver clinic since the year 2000. Only adult onset (diagnosed ≥16 years of age) episodes are shown. All patients underwent confirmatory liver biopsy.

** Upper limit of normal for IgG: 16 g/L.

Journal of Hepatology 2019 vol. 70 | 773–784
non-response. Of note, the rate of liver thioprine intolerance serum IgG values) was 57% for patients with azathioprine-treated cohorts. Mycophenolate mofetil (MMF) second-line therapy (0.5–2 g/day); 57% vs. 34%, \(p = 0.029 \), respectively, although significant side effects led to drug withdrawal in 10% of patients, with high mortality rates observed in both groups (10% vs. 13% over 5 years). Target drug trough values were not specified, although a mean level of 6 ng/ml has been cited elsewhere. In our practice the target trough level is related to the relative indication. In those for whom tacrolimus is used as an adjunct to existing dual therapy the authors usually advise trough levels of 3–5 ng/ml; whereas in those for whom tacrolimus represents the mainstay of immunosuppression, trough levels of 5–7 ng/ml are more often advocated.

Tacrolimus

Calcineurin inhibitors have been shown to be beneficial in inducing and maintaining biochemical remission in small numbers of patients, mostly children. Support for the therapeutic efficacy of tacrolimus in adults comes from a multicentre study in which 58/80 patients who were either non-responsive or intolerant to azathioprine achieved complete biochemical response. Notably, the rate of complete biochemical and immunological remission in prior azathioprine non-responders was significantly greater with tacrolimus (1–8 mg/day) vs. MMF second-line therapy (0.5–2 g/day); 57% vs. 34%, \(p = 0.029 \), respectively, although significant side effects led to drug withdrawal in 10% of patients, with high mortality rates observed in both groups (10% vs. 13% over 5 years). Target drug trough values were not specified, although a mean level of 6 ng/ml has been cited elsewhere. In our practice the target trough level is related to the relative indication. In those for whom tacrolimus is used as an adjunct to existing dual therapy the authors usually advise trough levels of 3–5 ng/ml; whereas in those for whom tacrolimus represents the mainstay of immunosuppression, trough levels of 5–7 ng/ml are more often advocated.

Biologics

The patient presented in our vignette was able to attain remission although this could not be sustained via conventional means following a period of non-adherence. Despite best efforts with thioprine therapy she required consistently high dosages of corticosteroids and failed second-line treatment with MMF. Few salvage therapies have been identified for AIH that is recalcitrant to conventional treatment. One retrospective series has reported success in using infliximab, albeit with concern over side effects. Anti-tumour necrosis factor \(\gamma \) has also been associated with hepatotoxicity in a number of case series, albeit not necessarily reflective of a classical immune-mediated process.

Rituximab is a chimeric monoclonal antibody directed against the CD20 antigen on the surface of normal and malignant B-cells. To date, there have been several small case series describing the rituximab experience in AIH, and collectively the data is promising, and supportive of the need for prospective trials. B-cell activating factor (BAFF), which belongs to the tumour necrosis factor superfamily, is also well known for its role in the survival and maturation of B-cells. BAFF is elevated in the serum of patients with AIH where values correlate with serum aminotransferase activity. An anti-BAFF receptor antibody therapy will be tested in a multicentre trial in AIH (NCT03217422).
Financial support

GMH is supported by the Lily and Terry Horner Chair in Autoimmune Liver Disease Research. PJT and GMH have received support from the NIHR Birmingham Biomedical Research Centre. This paper presents independent research supported by the NIHR Birmingham Biomedical Research Centre at the University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham.

Conflicts of interest

PJT, MH, DG and GMH have received speaker fees from Falk Pharma. GMH has consulted for Novartis. SGH has consulted for Falk Pharma.

Please refer to the accompanying ICMJE disclosure forms for further details.

Acknowledgements

The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health.

Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jhep.2018.11.006.
Grand Rounds

