Advertisement

Chronic hepatitis delta virus infection leads to functional impairment and severe loss of MAIT cells

      Highlights

      • Mucosa-associated invariant T (MAIT) cells are severely depleted in peripheral blood of HDV-infected patients.
      • Residual MAIT cells display a distinct CD38hiPD-1hiCD28loCD127lo compound phenotype.
      • Residual MAIT cells are functionally impaired in response to bacteria.
      • Patients with HDV exhibit signs of microbial translocation and increased IL-12 and IL-18.
      • IL-12 and IL-18 induce an activated MAIT cell phenotype and promote apoptosis.

      Background & Aims

      Hepatitis delta virus (HDV) infection is the most severe form of viral hepatitis. Although HDV-associated liver disease is considered immune-mediated, adaptive immune responses against HDV are weak. Thus, the role of several other cell-mediated mechanisms such as those driven by mucosa-associated invariant T (MAIT) cells, a group of innate-like T cells highly enriched in the human liver, has not been extensively studied in clinical HDV infection.

      Methods

      MAIT cells from a sizeable cohort of patients with chronic HDV were analyzed ex vivo and in vitro after stimulation. Results were compared with MAIT cells from hepatitis B virus (HBV) monoinfected patients and healthy controls.

      Results

      Circulating MAIT cells were dramatically decreased in the peripheral blood of HDV-infected patients. Signs of decline were also observed in the liver. In contrast, only a modest decrease of circulating MAIT cells was noted in HBV monoinfection. Unsupervised high-dimensional analysis of residual circulating MAIT cells in chronic HDV infection revealed the appearance of a compound phenotype of CD38hiPD-1hiCD28loCD127loPLZFloEomesloHelioslo cells indicative of activation. Corroborating these results, MAIT cells exhibited a functionally impaired responsiveness. In parallel to MAIT cell loss, HDV-infected patients exhibited signs of monocyte activation and increased levels of proinflammatory cytokines IL-12 and IL-18. In vitro, IL-12 and IL-18 induced an activated MAIT cell phenotype similar to the one observed ex vivo in HDV-infected patients. These cytokines also promoted MAIT cell death, suggesting that they may contribute to MAIT cell activation and subsequent loss during HDV infection.

      Conclusions

      These results suggest that chronic HDV infection engages the MAIT cell compartment causing activation, functional impairment, and subsequent progressive loss of MAIT cells as the HDV-associated liver disease progresses.

      Lay summary

      Hepatitis delta virus (HDV) infection is the most severe form of viral hepatitis. We found that in patients with HDV, a subset of innate-like T cells called mucosa-associated invariant T cells (or MAIT cells), which are normally abundant in peripheral blood and the liver, are activated, functionally impaired and severely depleted.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment
      Subscribe to Journal of Hepatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      Author names in bold designate shared co-first authorship

        • Hughes S.A.
        • Wedemeyer H.
        • Harrison P.M.
        Hepatitis delta virus.
        Lancet. 2011; 378: 73-85
        • Wedemeyer H.
        • Manns M.P.
        Epidemiology, pathogenesis and management of hepatitis D: update and challenges ahead.
        Nat Rev Gastroenterol Hepatol. 2010; 7: 31-40
        • Chen H.Y.
        • Shen D.T.
        • Ji D.Z.
        • Han P.C.
        • Zhang W.M.
        • Ma J.F.
        • et al.
        Prevalence and burden of hepatitis D virus infection in the global population: a systematic review and meta-analysis.
        Gut. 2018; 68: 512-521
        • Wedemeyer H.
        • Yurdaydin C.
        • Dalekos G.N.
        • Erhardt A.
        • Cakaloglu Y.
        • Degertekin H.
        • et al.
        Peginterferon plus adefovir versus either drug alone for hepatitis delta.
        N Engl J Med. 2011; 364: 322-331
        • Wranke A.
        • Wedemeyer H.
        Antiviral therapy of hepatitis delta virus infection - progress and challenges towards cure.
        Curr Opin Virol. 2016; 20: 112-118
        • Grabowski J.
        • Wedemeyer H.
        Hepatitis delta: immunopathogenesis and clinical challenges.
        Dig Dis. 2010; 28: 133-138
        • Protzer U.
        • Maini M.K.
        • Knolle P.A.
        Living in the liver: hepatic infections.
        Nat Rev Immunol. 2012; 12: 201-213
        • Fiedler M.
        • Lu M.
        • Siegel F.
        • Whipple J.
        • Roggendorf M.
        Immunization of woodchucks (Marmota monax) with hepatitis delta virus DNA vaccine.
        Vaccine. 2001; 19: 4618-4626
        • Grabowski J.
        • Yurdaydin C.
        • Zachou K.
        • Buggisch P.
        • Hofmann W.P.
        • Jaroszewicz J.
        • et al.
        Hepatitis D virus-specific cytokine responses in patients with chronic hepatitis delta before and during interferon alfa-treatment.
        Liver Int. 2011; 31: 1395-1405
        • Negro F.
        • Shapiro M.
        • Satterfield W.C.
        • Gerin J.L.
        • Purcell R.H.
        Reappearance of hepatitis D virus (HDV) replication in chronic hepatitis B virus carrier chimpanzees rechallenged with HDV.
        J Infect Dis. 1989; 160: 567-571
        • Schirdewahn T.
        • Grabowski J.
        • Owusu Sekyere S.
        • Bremer B.
        • Wranke A.
        • Lunemann S.
        • et al.
        The third signal cytokine interleukin 12 rather than immune checkpoint inhibitors contributes to the functional restoration of hepatitis D virus-specific T cells.
        J Infect Dis. 2017; 215: 139-149
        • Hengst J.
        • Theorell J.
        • Deterding K.
        • Potthoff A.
        • Dettmer A.
        • Ljunggren H.G.
        • et al.
        High-resolution determination of human immune cell signatures from fine-needle liver aspirates.
        Eur J Immunol. 2015; 45: 2154-2157
        • Lunemann S.
        • Malone D.F.
        • Grabowski J.
        • Port K.
        • Beziat V.
        • Bremer B.
        • et al.
        Effects of HDV infection and pegylated interferon alpha treatment on the natural killer cell compartment in chronically infected individuals.
        Gut. 2015; 64: 469-482
        • Lunemann S.
        • Malone D.F.
        • Hengst J.
        • Port K.
        • Grabowski J.
        • Deterding K.
        • et al.
        Compromised function of natural killer cells in acute and chronic viral hepatitis.
        J Infect Dis. 2014; 209: 1362-1373
        • Dusseaux M.
        • Martin E.
        • Serriari N.
        • Peguillet I.
        • Premel V.
        • Louis D.
        • et al.
        Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17-secreting T cells.
        Blood. 2011; 117: 1250-1259
        • Treiner E.
        • Duban L.
        • Bahram S.
        • Radosavljevic M.
        • Wanner V.
        • Tilloy F.
        • et al.
        Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1.
        Nature. 2003; 422: 164-169
        • Jeffery H.C.
        • van Wilgenburg B.
        • Kurioka A.
        • Parekh K.
        • Stirling K.
        • Roberts S.
        • et al.
        Biliary epithelium and liver B cells exposed to bacteria activate intrahepatic MAIT cells through MR1.
        J Hepatol. 2016; 64: 1118-1127
        • Jo J.
        • Tan A.T.
        • Ussher J.E.
        • Sandalova E.
        • Tang X.Z.
        • Tan-Garcia A.
        • et al.
        Toll-like receptor 8 agonist and bacteria trigger potent activation of innate immune cells in human liver.
        PLoS Pathog. 2014; 10e1004210
        • Corbett A.J.
        • Eckle S.B.
        • Birkinshaw R.W.
        • Liu L.
        • Patel O.
        • Mahony J.
        • et al.
        T-cell activation by transitory neo-antigens derived from distinct microbial pathways.
        Nature. 2014; 509: 361-365
        • Kjer-Nielsen L.
        • Patel O.
        • Corbett A.J.
        • Le Nours J.
        • Meehan B.
        • Liu L.
        • et al.
        MR1 presents microbial vitamin B metabolites to MAIT cells.
        Nature. 2012; 491: 717-723
        • Gibbs A.
        • Leeansyah E.
        • Introini A.
        • Paquin-Proulx D.
        • Hasselrot K.
        • Andersson E.
        • et al.
        MAIT cells reside in the female genital mucosa and are biased towards IL-17 and IL-22 production in response to bacterial stimulation.
        Mucosal Immunol. 2017; 10: 35-45
        • Le Bourhis L.
        • Martin E.
        • Peguillet I.
        • Guihot A.
        • Froux N.
        • Core M.
        • et al.
        Antimicrobial activity of mucosal-associated invariant T cells.
        Nat Immunol. 2010; 11: 701-708
        • Kurioka A.
        • Ussher J.E.
        • Cosgrove C.
        • Clough C.
        • Fergusson J.R.
        • Smith K.
        • et al.
        MAIT cells are licensed through granzyme exchange to kill bacterially sensitized targets.
        Mucosal Immunol. 2015; 8: 429-440
        • Le Bourhis L.
        • Dusseaux M.
        • Bohineust A.
        • Bessoles S.
        • Martin E.
        • Premel V.
        • et al.
        MAIT cells detect and efficiently lyse bacterially-infected epithelial cells.
        PLoS Pathog. 2013; 9e1003681
        • Leeansyah E.
        • Svard J.
        • Dias J.
        • Buggert M.
        • Nystrom J.
        • Quigley M.F.
        • et al.
        Arming of MAIT cell cytolytic antimicrobial activity is induced by IL-7 and defective in HIV-1 infection.
        PLoS Pathog. 2015; 11e1005072
        • Kurioka A.
        • Walker L.J.
        • Klenerman P.
        • Willberg C.B.
        MAIT cells: new guardians of the liver.
        Clin Transl Immunology. 2016; 5e98
        • Ussher J.E.
        • Bilton M.
        • Attwod E.
        • Shadwell J.
        • Richardson R.
        • de Lara C.
        • et al.
        CD161++ CD8+ T cells, including the MAIT cell subset, are specifically activated by IL-12+IL-18 in a TCR-independent manner.
        Eur J Immunol. 2014; 44: 195-203
        • Cosgrove C.
        • Ussher J.E.
        • Rauch A.
        • Gartner K.
        • Kurioka A.
        • Huhn M.H.
        • et al.
        Early and nonreversible decrease of CD161++ /MAIT cells in HIV infection.
        Blood. 2013; 121: 951-961
        • Hengst J.
        • Strunz B.
        • Deterding K.
        • Ljunggren H.G.
        • Leeansyah E.
        • Manns M.P.
        • et al.
        Nonreversible MAIT cell-dysfunction in chronic hepatitis C virus infection despite successful interferon-free therapy.
        Eur J Immunol. 2016; 46: 2204-2210
        • Leeansyah E.
        • Ganesh A.
        • Quigley M.F.
        • Sonnerborg A.
        • Andersson J.
        • Hunt P.W.
        • et al.
        Activation, exhaustion, and persistent decline of the antimicrobial MR1-restricted MAIT-cell population in chronic HIV-1 infection.
        Blood. 2013; 121: 1124-1135
        • van Wilgenburg B.
        • Scherwitzl I.
        • Hutchinson E.C.
        • Leng T.
        • Kurioka A.
        • Kulicke C.
        • et al.
        MAIT cells are activated during human viral infections.
        Nat Commun. 2016; 7: 11653
        • Dias J.
        • Sandberg J.K.
        • Leeansyah E.
        Extensive phenotypic analysis, transcription factor profiling, and effector cytokine production of human MAIT cells by flow cytometry.
        Methods Mol Biol. 2017; 1514: 241-256
        • Dias J.
        • Sobkowiak M.J.
        • Sandberg J.K.
        • Leeansyah E.
        Human MAIT-cell responses to Escherichia coli: activation, cytokine production, proliferation, and cytotoxicity.
        J Leukoc Biol. 2016; 100: 233-240
        • Hengst J.
        • Falk C.S.
        • Schlaphoff V.
        • Deterding K.
        • Manns M.P.
        • Cornberg M.
        • et al.
        Direct-acting antiviral-induced hepatitis C virus clearance does not completely restore the altered cytokine and chemokine milieu in patients with chronic hepatitis C.
        J Infect Dis. 2016; 214: 1965-1974
        • Sureau C.
        The use of hepatocytes to investigate HDV infection: the HDV/HepaRG model.
        Methods Mol Biol. 2010; 640: 463-473
        • Veloso Alves Pereira I.
        • Buchmann B.
        • Sandmann L.
        • Sprinzl K.
        • Schlaphoff V.
        • Dohner K.
        • et al.
        Primary biliary acids inhibit hepatitis D virus (HDV) entry into human hepatoma cells expressing the sodium-taurocholate cotransporting polypeptide (NTCP).
        PLoS ONE. 2015; 10e0117152
        • Martin E.
        • Treiner E.
        • Duban L.
        • Guerri L.
        • Laude H.
        • Toly C.
        • et al.
        Stepwise development of MAIT cells in mouse and human.
        PLoS Biol. 2009; 7e54
        • Haga K.
        • Chiba A.
        • Shibuya T.
        • Osada T.
        • Ishikawa D.
        • Kodani T.
        • et al.
        MAIT cells are activated and accumulated in the inflamed mucosa of ulcerative colitis.
        J Gastroenterol Hepatol. 2016; 31: 965-972
        • Li J.
        • Reantragoon R.
        • Kostenko L.
        • Corbett A.J.
        • Varigos G.
        • Carbone F.R.
        The frequency of mucosal-associated invariant T cells is selectively increased in dermatitis herpetiformis.
        Australas J Dermatol. 2017; 58: 200-204
        • Sobkowiak M.J.
        • Davanian H.
        • Heymann R.
        • Gibbs A.
        • Emgard J.
        • Dias J.
        • et al.
        Tissue-resident MAIT cell populations in human oral mucosa exhibit an activated profile and produce IL-17.
        Eur J Immunol. 2019; 49: 133-143
        • Dias J.
        • Leeansyah E.
        • Sandberg J.K.
        Multiple layers of heterogeneity and subset diversity in human MAIT cell responses to distinct microorganisms and to innate cytokines.
        Proc Natl Acad Sci U S A. 2017; 114: E5434-E5443
        • Savage A.K.
        • Constantinides M.G.
        • Han J.
        • Picard D.
        • Martin E.
        • Li B.
        • et al.
        The transcription factor PLZF directs the effector program of the NKT cell lineage.
        Immunity. 2008; 29: 391-403
        • Lind S.M.
        • Kuylenstierna C.
        • Moll M.
        • D Jordö E.
        • Winqvist O.
        • Lundeberg L.
        • et al.
        IL-18 skews the invariant NKT-cell population via autoreactive activation in atopic eczema.
        Eur J Immunol. 2009; 39: 2293-2301
        • Sandberg J.K.
        • Dias J.
        • Shacklett B.L.
        • Leeansyah E.
        Will loss of your MAITs weaken your HAART [corrected]?.
        AIDS. 2013; 27: 2501-2504
        • Sandler N.G.
        • Koh C.
        • Roque A.
        • Eccleston J.L.
        • Siegel R.B.
        • Demino M.
        • et al.
        Host response to translocated microbial products predicts outcomes of patients with HBV or HCV infection.
        Gastroenterology. 2011; 141: 1220-1230
        • Balagopal A.
        • Philp F.H.
        • Astemborski J.
        • Block T.M.
        • Mehta A.
        • Long R.
        • et al.
        Human immunodeficiency virus-related microbial translocation and progression of hepatitis C.
        Gastroenterology. 2008; 135: 226-233
        • Boeijen L.L.
        • Montanari N.R.
        • de Groen R.A.
        • van Oord G.W.
        • van der Heide-Mulder M.
        • de Knegt R.J.
        • et al.
        Mucosal-associated invariant T (MAIT) cells are more activated in chronic hepatitis B, but not depleted in blood: reversal by antiviral therapy.
        J Infect Dis. 2017; 216: 969-976
        • Bolte F.J.
        • O'Keefe A.C.
        • Webb L.M.
        • Serti E.
        • Rivera E.
        • Liang T.J.
        • et al.
        Intra-hepatic depletion of mucosal associated invariant T cells in hepatitis C virus-induced liver inflammation.
        Gastroenterology. 2017; 153: 1392-1403
        • Serriari N.E.
        • Eoche M.
        • Lamotte L.
        • Lion J.
        • Fumery M.
        • Marcelo P.
        • et al.
        Innate mucosal-associated invariant T (MAIT) cells are activated in inflammatory bowel diseases.
        Clin Exp Immunol. 2014; 176: 266-274
        • Böttcher K.
        • Rombouts K.
        • Saffioti F.
        • Roccarina D.
        • Rosselli M.
        • Hall A.
        • et al.
        MAIT cells are chronically activated in patients with autoimmune liver disease and promote pro-fibrogenic hepatic stellate cell activation.
        Hepatology. 2018; 68: 172-186
        • Arvaniti V.
        • D'Amico G.
        • Fede G.
        • Manousou P.
        • Tsochatzis E.
        • Pleguezuelo M.
        • et al.
        Infections in patients with cirrhosis increase mortality four-fold and should be used in determining prognosis.
        Gastroenterology. 2010; 139: 1246-1256
        • D'Amico G.
        • Garcia-Tsao G.
        • Pagliaro L.
        Natural history and prognostic indicators of survival in cirrhosis: a systematic review of 118 studies.
        J Hepatol. 2006; 44: 217-231