Advertisement
Research Article| Volume 71, ISSUE 3, P553-562, September 2019

Fetal origin confers radioresistance on liver macrophages via p21cip1/WAF1

      Highlights

      • Kupffer cell-specific Cre-driven RiboTag reporter allows translatome analysis.
      • Fetal-derived Kupffer cells are relatively radioresistant.
      • Adult monocyte-derived Kupffer cells are sensitive to lethal irradiation.
      • p21Cip/WAF1 regulates the radioresistance of the fetal subset.

      Background & Aims

      Cells of hematopoietic origin, including macrophages, are generally radiation sensitive, but a subset of Kupffer cells (KCs) is relatively radioresistant. Here, we focused on the identity of the radioresistant KCs in unmanipulated mice and the mechanism of radioresistance.

      Methods

      We employed Emr1- and inducible CX3Cr1-based fate-mapping strategies combined with the RiboTag reporter to identify the total KCs and the embryo-derived KCs, respectively. The KC compartment was reconstituted with adult bone-marrow-derived KCs (bm-KCs) using clodronate depletion. Mice were lethally irradiated and transplanted with donor bone marrow, and the radioresistance of bone-marrow- or embryo-derived KCs was studied. Gene expression was analyzed using in situ mRNA isolation via RiboTag reporter mice, and the translatomes were compared among subsets.

      Results

      Here, we identified the radioresistant KCs as the long-lived subset that is derived from CX3CR1-expressing progenitor cells in fetal life, while adult bm-KCs do not resist irradiation. While both subsets upregulated the Cdkn1a gene, encoding p21-cip1/WAF1 protein, radioresistant embryo-derived KCs showed a greater increase in response to irradiation. In the absence of this molecule, the radioresistance of KCs was compromised. Replacement KCs, derived from adult hematopoietic stem cells, differed from radioresistant KCs in their expression of genes related to immunity and phagocytosis.

      Conclusions

      Here, we show that, in the murine liver, a subset of KCs of embryonic origin resists lethal irradiation through Cdkn1a upregulation and is maintained for a long period, while bm-KCs do not survive lethal irradiation.

      Lay summary

      Kupffer cells (KCs) are the tissue-resident macrophages of the liver. KCs can be originated from fetal precursors and from monocytes during the fetal stage and post-birth, respectively. Most immune cells in mice are sensitive to lethal-irradiation-induced death, while a subset of KCs resists radiation-induced death. These radioresistant KCs continue to live in the irradiated mice. We discovered that this relatively radioresistant KC subset are the fetal-derived KCs, and they achieve this through cell-cycle arrest. Understanding the radiobiology of KCs will provide valuable insights into the mechanisms that elicit radiation-induced liver disease.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Hepatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      Author names in bold designate shared co-first authorship

        • Abdullah Z.
        • Knolle P.A.
        Liver macrophages in healthy and diseased liver.
        Pflugers Arch. 2017; 469: 553-560
        • Ginhoux F.
        • Lim S.
        • Hoeffel G.
        • Low D.
        • Huber T.
        Origin and differentiation of microglia.
        Front Cell Neurosci. 2013; 7: 45
        • Bogunovic M.
        • Ginhoux F.
        • Wagers A.
        • Loubeau M.
        • Isola L.M.
        • Lubrano L.
        • et al.
        Identification of a radio-resistant and cycling dermal dendritic cell population in mice and men.
        J Exp Med. 2006; 203: 2627-2638
        • Klein I.
        • Cornejo J.C.
        • Polakos N.K.
        • John B.
        • Wuensch S.A.
        • Topham D.J.
        • et al.
        Kupffer cell heterogeneity: functional properties of bone marrow derived and sessile hepatic macrophages.
        Blood. 2007; 110: 4077-4085
        • Beattie L.
        • Sawtell A.
        • Mann J.
        • Frame T.C.M.
        • Teal B.
        • de Labastida Rivera F.
        • et al.
        Bone marrow-derived and resident liver macrophages display unique transcriptomic signatures but similar biological functions.
        J Hepatol. 2016; 65: 758-768
        • McDonald B.
        • Kubes P.
        Innate immune cell trafficking and function during sterile inflammation of the liver.
        Gastroenterology. 2016; 151: 1087-1095
        • Lavin Y.
        • Winter D.
        • Blecher-Gonen R.
        • David E.
        • Keren-Shaul H.
        • Merad M.
        • et al.
        Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment.
        Cell. 2014; 159: 1312-1326
        • Schulz C.
        • Gomez Perdiguero E.
        • Chorro L.
        • Szabo-Rogers H.
        • Cagnard N.
        • Kierdorf K.
        • et al.
        A lineage of myeloid cells independent of Myb and hematopoietic stem cells.
        Science. 2012; 336: 86-90
        • Yona S.
        • Kim K.W.
        • Wolf Y.
        • Mildner A.
        • Varol D.
        • Breker M.
        • et al.
        Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis.
        Immunity. 2013; 38: 79-91
        • Gomez Perdiguero E.
        • Klapproth K.
        • Schulz C.
        • Busch K.
        • Azzoni E.
        • Crozet L.
        • et al.
        Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors.
        Nature. 2015; 518: 547-551
        • Hoeffel G.
        • Chen J.
        • Lavin Y.
        • Low D.
        • Almeida F.F.
        • See P.
        • et al.
        C-Myb(+) erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages.
        Immunity. 2015; 42: 665-678
        • Sheng J.
        • Ruedl C.
        • Karjalainen K.
        Most tissue-resident macrophages except microglia are derived from fetal hematopoietic stem cells.
        Immunity. 2015; 43: 382-393
        • Scott C.L.
        • Zheng F.
        • De Baetselier P.
        • Martens L.
        • Saeys Y.
        • De Prijck S.
        • et al.
        Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells.
        Nat Commun. 2016; 7: 10321
        • Sierro F.
        • Evrard M.
        • Rizzetto S.
        • Melino M.
        • Mitchell A.J.
        • Florido M.
        • et al.
        A liver capsular network of monocyte-derived macrophages restricts hepatic dissemination of intraperitoneal bacteria by neutrophil recruitment.
        Immunity. 2017; 47 (374–388 e6)
        • Han X.
        • Wang R.
        • Zhou Y.
        • Fei L.
        • Sun H.
        • Lai S.
        • et al.
        Mapping the mouse cell atlas by microwell-seq.
        Cell. 2018; 172 (e17): 1091-1107
        • Sanz E.
        • Yang L.
        • Su T.
        • Morris D.R.
        • McKnight G.S.
        • Amieux P.S.
        Cell-type-specific isolation of ribosome-associated mRNA from complex tissues.
        Proc Natl Acad Sci U S A. 2009; 106: 13939-13944
        • Mohar I.
        • Brempelis K.J.
        • Murray S.A.
        • Ebrahimkhani M.R.
        • Crispe I.N.
        Isolation of non-parenchymal cells from the mouse liver.
        Methods Mol Biol. 2015; 1325: 3-17
        • Lynch R.W.
        • Hawley C.A.
        • Pellicoro A.
        • Bain C.C.
        • Iredale J.P.
        • Jenkins S.J.
        An efficient method to isolate Kupffer cells eliminating endothelial cell contamination and selective bias.
        J Leukoc Biol. 2018; 104: 579-586
        • Schaller E.
        • Macfarlane A.J.
        • Rupec R.A.
        • Gordon S.
        • McKnight A.J.
        • Pfeffer K.
        Inactivation of the F4/80 glycoprotein in the mouse germ line.
        Mol Cell Biol. 2002; 22: 8035-8043
        • Gautier E.L.
        • Shay T.
        • Miller J.
        • Greter M.
        • Jakubzick C.
        • Ivanov S.
        • et al.
        Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages.
        Nat Immunol. 2012; 13: 1118-1128
        • Abram C.L.
        • Roberge G.L.
        • Hu Y.
        • Lowell C.A.
        Comparative analysis of the efficiency and specificity of myeloid-Cre deleting strains using ROSA-EYFP reporter mice.
        J Immunol Methods. 2014; 408: 89-100
        • Haimon Z.
        • Volaski A.
        • Orthgiess J.
        • Boura-Halfon S.
        • Varol D.
        • Shemer A.
        • et al.
        Re-evaluating microglia expression profiles using RiboTag and cell isolation strategies.
        Nat Immunol. 2018; 19: 636-644
        • Hagemeyer N.
        • Kierdorf K.
        • Frenzel K.
        • Xue J.
        • Ringelhan M.
        • Abdullah Z.
        • et al.
        Transcriptome-based profiling of yolk sac-derived macrophages reveals a role for Irf8 in macrophage maturation.
        EMBO J. 2016; 35: 1730-1744
        • Molawi K.
        • Wolf Y.
        • Kandalla P.K.
        • Favret J.
        • Hagemeyer N.
        • Frenzel K.
        • et al.
        Progressive replacement of embryo-derived cardiac macrophages with age.
        J Exp Med. 2014; 211: 2151-2158
        • Ginhoux F.
        • Greter M.
        • Leboeuf M.
        • Nandi S.
        • See P.
        • Gokhan S.
        • et al.
        Fate mapping analysis reveals that adult microglia derive from primitive macrophages.
        Science. 2010; 330: 841-845
        • Epelman S.
        • Lavine K.J.
        • Beaudin A.E.
        • Sojka D.K.
        • Carrero J.A.
        • Calderon B.
        • et al.
        Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation.
        Immunity. 2014; 40: 91-104
        • Mizutani M.
        • Pino P.A.
        • Saederup N.
        • Charo I.F.
        • Ransohoff R.M.
        • Cardona A.E.
        The fractalkine receptor but not CCR2 is present on microglia from embryonic development throughout adulthood.
        J Immunol. 2012; 188: 29-36
        • Stremmel C.
        • Schuchert R.
        • Wagner F.
        • Thaler R.
        • Weinberger T.
        • Pick R.
        • et al.
        Yolk sac macrophage progenitors traffic to the embryo during defined stages of development.
        Nat Commun. 2018; 9: 75
        • Van Rooijen N.
        • Sanders A.
        Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications.
        J Immunol Methods. 1994; 174: 83-93
        • David B.A.
        • Rezende R.M.
        • Antunes M.M.
        • Santos M.M.
        • Freitas Lopes M.A.
        • Diniz A.B.
        • et al.
        Combination of mass cytometry and imaging analysis reveals origin, location, and functional repopulation of liver myeloid cells in mice.
        Gastroenterology. 2016; 151: 1176-1191
        • Price J.G.
        • Idoyaga J.
        • Salmon H.
        • Hogstad B.
        • Bigarella C.L.
        • Ghaffari S.
        • et al.
        CDKN1A regulates Langerhans cell survival and promotes Treg cell generation upon exposure to ionizing irradiation.
        Nat Immunol. 2015; 16: 1060-1068
        • Kuo L.J.
        • Yang L.X.
        Gamma-H2AX - a novel biomarker for DNA double-strand breaks.
        Vivo. 2008; 22: 305-309
        • Purbey P.K.
        • Scumpia P.O.
        • Kim P.J.
        • Tong A.J.
        • Iwamoto K.S.
        • McBride W.H.
        • et al.
        Defined sensing mechanisms and signaling pathways contribute to the global inflammatory gene expression output elicited by ionizing radiation.
        Immunity. 2017; 47 (e3): 421-434
        • Teresa Pinto A.
        • Laranjeiro Pinto M.
        • Patricia Cardoso A.
        • Monteiro C.
        • Teixeira Pinto M.
        • Filipe Maia A.
        • et al.
        Ionizing radiation modulates human macrophages towards a pro-inflammatory phenotype preserving their pro-invasive and pro-angiogenic capacities.
        Sci Rep. 2016; 6: 18765
        • Wu Q.
        • Allouch A.
        • Martins I.
        • Modjtahedi N.
        • Deutsch E.
        • Perfettini J.L.
        Macrophage biology plays a central role during ionizing radiation-elicited tumor response.
        Biomed J. 2017; 40: 200-211
        • Georgakilas A.G.
        • Martin O.A.
        • Bonner W.M.
        p21: a two-faced genome guardian.
        Trends Mol Med. 2017; 23: 310-319
        • Brugarolas J.
        • Chandrasekaran C.
        • Gordon J.I.
        • Beach D.
        • Jacks T.
        • Hannon G.J.
        Radiation-induced cell cycle arrest compromised by p21 deficiency.
        Nature. 1995; 377: 552-557
        • Abbas T.
        • Dutta A.
        p21 in cancer: intricate networks and multiple activities.
        Nat Rev Cancer. 2009; 9: 400-414
        • Koike M.
        • Yutoku Y.
        • Koike A.
        Accumulation of p21 proteins at DNA damage sites independent of p53 and core NHEJ factors following irradiation.
        Biochem Biophys Res Commun. 2011; 412: 39-43
        • Chen W.
        • Sun Z.
        • Wang X.J.
        • Jiang T.
        • Huang Z.
        • Fang D.
        • et al.
        Direct interaction between Nrf2 and p21(Cip1/WAF1) upregulates the Nrf2-mediated antioxidant response.
        Mol Cell. 2009; 34: 663-673
        • Baer K.
        • Roosevelt M.
        • Clarkson Jr., A.B.
        • van Rooijen N.
        • Schnieder T.
        • Frevert U.
        Kupffer cells are obligatory for Plasmodium yoelii sporozoite infection of the liver.
        Cell Microbiol. 2007; 9: 397-412
        • Bittmann I.
        • Bottino A.
        • Baretton G.B.
        • Gerbes A.L.
        • Zachoval R.
        • Rau H.G.
        • et al.
        The role of graft-resident Kupffer cells and lymphocytes of donor type during the time course after liver transplantation–a clinico-pathological study.
        Virchows Arch. 2003; 443: 541-548
        • MacParland S.A.
        • Liu J.C.
        • Ma X.Z.
        • Innes B.T.
        • Bartczak A.M.
        • Gage B.K.
        • et al.
        Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations.
        Nat Commun. 2018; 9: 4383