Advertisement
Research Article| Volume 71, ISSUE 4, P773-782, October 2019

Interferon-γ-dependent immune responses contribute to the pathogenesis of sclerosing cholangitis in mice

      Highlights

      • Patients with PSC showed increased IFNγ serum concentrations and elevated frequencies of hepatic CD56bright NK cells.
      • Less hepatic NK cells and CD8+ T cells expressing cytotoxic effector molecules after deletion of IFNγ in Mdr2−/− mice.
      • Less inflammatory macrophages and more restorative macrophages after genetic deletion of IFNγ.
      • Genetic deletion and blockage of IFNγ in Mdr2−/− mice attenuated liver fibrosis.

      Background and Aims

      Primary sclerosing cholangitis (PSC) is an idiopathic, chronic cholestatic liver disorder characterized by biliary inflammation and fibrosis. Increased numbers of intrahepatic interferon-γ- (IFNγ) producing lymphocytes have been documented in patients with PSC, yet their functional role remains to be determined.

      Methods

      Liver tissue samples were collected from patients with PSC. The contribution of lymphocytes to liver pathology was assessed in Mdr2−/− x Rag1−/− mice, which lack T and B cells, and following depletion of CD90.2+ or natural killer (NK)p46+ cells in Mdr2−/− mice. Liver pathology was also determined in Mdr2−/− x Ifng−/− mice and following anti-IFNγ antibody treatment of Mdr2−/− mice. Immune cell composition was analysed by multi-colour flow cytometry. Liver injury and fibrosis were determined by standard assays.

      Results

      Patients with PSC showed increased IFNγ serum levels and elevated numbers of hepatic CD56bright NK cells. In Mdr2−/− mice, hepatic CD8+ T cells and NK cells were the primary source of IFNγ. Depletion of CD90.2+ cells reduced hepatic Ifng expression, NK cell cytotoxicity and liver injury similar to Mdr2−/− x Rag1−/− mice. Depletion of NK cells resulted in reduced CD8+ T cell cytotoxicity and liver fibrosis. The complete absence of IFNγ in Mdr2−/−x Ifng−/− mice reduced NK cell and CD8+ T cell frequencies expressing the cytotoxic effector molecules granzyme B and TRAIL and prevented liver fibrosis. The antifibrotic effect of IFNγ was also observed upon antibody-dependent neutralisation in Mdr2−/− mice.

      Conclusion

      IFNγ changed the phenotype of hepatic CD8+ T cells and NK cells towards increased cytotoxicity and its absence attenuated liver fibrosis in chronic sclerosing cholangitis. Therefore, unravelling the immunopathogenesis of PSC with a particular focus on IFNγ might help to develop novel treatment options.

      Lay summary

      Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease characterized by biliary inflammation and fibrosis, whose current medical treatment is hardly effective. We observed an increased interferon (IFN)-γ response in patients with PSC and in a mouse model of sclerosing cholangitis. IFNγ changed the phenotype of hepatic CD8+ T lymphocytes and NK cells towards increased cytotoxicity, and its absence decreased liver cell death, reduced frequencies of inflammatory macrophages in the liver and attenuated liver fibrosis. Therefore, IFNγ-dependent immune responses may disclose checkpoints for future therapeutic intervention strategies in sclerosing cholangitis.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Hepatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      Author names in bold designate shared co-first authorship

        • Lazaridis K.N.
        • LaRusso N.F.
        Primary sclerosing cholangitis.
        N Engl J Med. 2016; 375: 2501-2502https://doi.org/10.1056/NEJMc1613273
        • Chung B.K.
        • Hirschfield G.M.
        Immunogenetics in primary sclerosing cholangitis.
        Curr Opin Gastroenterol. 2017; 33: 93-98https://doi.org/10.1097/MOG.0000000000000336
        • Schoknecht T.
        • Schwinge D.
        • Stein S.
        • Weiler-Normann C.
        • Sebode M.
        • Mucha S.
        • et al.
        CD4+ T cells from patients with primary sclerosing cholangitis exhibit reduced apoptosis and down-regulation of proapoptotic Bim in peripheral blood.
        J Leukoc Biol. 2017; 101: 589-597https://doi.org/10.1189/jlb.5A1015-469R
        • Sebode M.
        • Peiseler M.
        • Franke B.
        • Schwinge D.
        • Schoknecht T.
        • Wortmann F.
        • et al.
        Reduced FOXP3(+) regulatory T cells in patients with primary sclerosing cholangitis are associated with IL2RA gene polymorphisms.
        J Hepatol. 2014; 60: 1010-1016https://doi.org/10.1016/j.jhep.2013.12.027
        • Dienes H.P.
        • Lohse A.W.
        • Gerken G.
        • Schirmacher P.
        • Gallati H.
        • Lohr H.F.
        • et al.
        Bile duct epithelia as target cells in primary biliary cirrhosis and primary sclerosing cholangitis.
        Virchows Arch. 1997; 431: 119-124
        • Liaskou E.
        • Jeffery L.E.
        • Trivedi P.J.
        • Reynolds G.M.
        • Suresh S.
        • Bruns T.
        • et al.
        Loss of CD28 expression by liver-infiltrating T cells contributes to pathogenesis of primary sclerosing cholangitis.
        Gastroenterology. 2014; 147: 221 e7-232 e7https://doi.org/10.1053/j.gastro.2014.04.003
        • Landi A.
        • Weismuller T.J.
        • Lankisch T.O.
        • Santer D.M.
        • Tyrrell D.L.
        • Manns M.P.
        • et al.
        Differential serum levels of eosinophilic eotaxins in primary sclerosing cholangitis, primary biliary cirrhosis, and autoimmune hepatitis.
        J Interferon Cytokine Res. 2014; 34: 204-214https://doi.org/10.1089/jir.2013.0075
        • Mueller T.
        • Beutler C.
        • Pico A.H.
        • Shibolet O.
        • Pratt D.S.
        • Pascher A.
        • et al.
        Enhanced innate immune responsiveness and intolerance to intestinal endotoxins in human biliary epithelial cells contributes to chronic cholangitis.
        Liver Int. 2011; 31: 1574-1588https://doi.org/10.1111/j.1478-3231.2011.02635.x
        • Fickert P.
        • Pollheimer M.J.
        • Beuers U.
        • Lackner C.
        • Hirschfield G.
        • Housset C.
        • et al.
        Characterization of animal models for primary sclerosing cholangitis (PSC).
        J Hepatol. 2014; 60: 1290-1303https://doi.org/10.1016/j.jhep.2014.02.006
        • Fickert P.
        • Fuchsbichler A.
        • Wagner M.
        • Zollner G.
        • Kaser A.
        • Tilg H.
        • et al.
        Regurgitation of bile acids from leaky bile ducts causes sclerosing cholangitis in Mdr2 (Abcb4) knockout mice.
        Gastroenterology. 2004; 127: 261-274
        • Jacquemin E.
        • De Vree J.M.
        • Cresteil D.
        • Sokal E.M.
        • Sturm E.
        • Dumont M.
        • et al.
        The wide spectrum of multidrug resistance 3 deficiency: from neonatal cholestasis to cirrhosis of adulthood.
        Gastroenterology. 2001; 120: 1448-1458
        • Taylor A.E.
        • Carey A.N.
        • Kudira R.
        • Lages C.S.
        • Shi T.
        • Lam S.
        • et al.
        Interleukin 2 promotes hepatic regulatory T cell responses and protects from biliary fibrosis in murine sclerosing cholangitis.
        Hepatology. 2018; 68: 1905-1921https://doi.org/10.1002/hep.30061
        • Green D.S.
        • Young H.A.
        • Valencia J.C.
        Current prospects of type II interferon gamma signaling and autoimmunity.
        J Biol Chem. 2017; 292: 13925-13933https://doi.org/10.1074/jbc.R116.774745
        • Barikbin R.
        • Neureiter D.
        • Wirth J.
        • Erhardt A.
        • Schwinge D.
        • Kluwe J.
        • et al.
        Induction of heme oxygenase 1 prevents progression of liver fibrosis in Mdr2 knockout mice.
        Hepatology. 2012; 55: 553-562https://doi.org/10.1002/hep.24711
        • Segnani C.
        • Ippolito C.
        • Antonioli L.
        • Pellegrini C.
        • Blandizzi C.
        • Dolfi A.
        • et al.
        Histochemical detection of collagen fibers by sirius red/fast green is more sensitive than van gieson or sirius red alone in normal and inflamed rat colon.
        PloS One. 2015; 10e0144630https://doi.org/10.1371/journal.pone.0144630
        • Ishak K.
        • Baptista A.
        • Bianchi L.
        • Callea F.
        • De Groote J.
        • Gudat F.
        • et al.
        Histological grading and staging of chronic hepatitis.
        J Hepatol. 1995; 22: 696-699
        • Uchinami H.
        • Seki E.
        • Brenner D.A.
        • D'Armiento J.
        Loss of MMP 13 attenuates murine hepatic injury and fibrosis during cholestasis.
        Hepatology. 2006; 44: 420-429https://doi.org/10.1002/hep.21268
        • Potikha T.
        • Stoyanov E.
        • Pappo O.
        • Frolov A.
        • Mizrahi L.
        • Olam D.
        • et al.
        Interstrain differences in chronic hepatitis and tumor development in a murine model of inflammation-mediated hepatocarcinogenesis.
        Hepatology. 2013; 58: 192-204https://doi.org/10.1002/hep.26335
        • Barikbin R.
        • Berkhout L.
        • Bolik J.
        • Schmidt-Arras D.
        • Ernst T.
        • Ittrich H.
        • et al.
        Early heme oxygenase 1 induction delays tumour initiation and enhances DNA damage repair in liver macrophages of Mdr2(/) mice.
        Sci Rep. 2018; 8: 16238https://doi.org/10.1038/s41598-018-33233-0
        • Harmon C.
        • Robinson M.W.
        • Fahey R.
        • Whelan S.
        • Houlihan D.D.
        • Geoghegan J.
        • et al.
        Tissue-resident Eomes(hi) T-bet(lo) CD56(bright) NK cells with reduced proinflammatory potential are enriched in the adult human liver.
        Eur J Immunol. 2016; 46: 2111-2120https://doi.org/10.1002/eji.201646559
        • Guicciardi M.E.
        • Trussoni C.E.
        • Krishnan A.
        • Bronk S.F.
        • Lorenzo Pisarello M.J.
        • O'Hara S.P.
        • et al.
        Macrophages contribute to the pathogenesis of sclerosing cholangitis in mice.
        J Hepatol. 2018; 69: 676-686https://doi.org/10.1016/j.jhep.2018.05.018
        • Krenkel O.
        • Tacke F.
        Liver macrophages in tissue homeostasis and disease.
        Nat Rev Immunol. 2017; 17: 306-321https://doi.org/10.1038/nri.2017.11
        • Luo X.Y.
        • Takahara T.
        • Kawai K.
        • Fujino M.
        • Sugiyama T.
        • Tsuneyama K.
        • et al.
        IFN-gamma deficiency attenuates hepatic inflammation and fibrosis in a steatohepatitis model induced by a methionine- and choline-deficient high-fat diet.
        Am J Physiol Gastrointest Liver Physiol. 2013; 305: G891-G899https://doi.org/10.1152/ajpgi.00193.2013
        • Radaeva S.
        • Sun R.
        • Jaruga B.
        • Nguyen V.T.
        • Tian Z.
        • Gao B.
        Natural killer cells ameliorate liver fibrosis by killing activated stellate cells in NKG2D-dependent and tumor necrosis factor-related apoptosis-inducing ligand-dependent manners.
        Gastroenterology. 2006; 130: 435-452https://doi.org/10.1053/j.gastro.2005.10.055
        • Langeneckert A.E.
        • Lunemann S.
        • Martrus G.
        • Salzberger W.
        • Hess L.U.
        • Ziegler A.E.
        • et al.
        CCL21-expression and accumulation of CCR7(+) NK cells in livers of patients with primary sclerosing cholangitis.
        Eur J Immunol. 2019; https://doi.org/10.1002/eji.201847965
        • Tedesco D.
        • Thapa M.
        • Chin C.Y.
        • Ge Y.
        • Gong M.
        • Li J.
        • et al.
        Alterations in intestinal microbiota lead to production of interleukin 17 by intrahepatic gammadelta T-cell receptor-positive cells and pathogenesis of cholestatic liver disease.
        Gastroenterology. 2018; 154: 2178-2193https://doi.org/10.1053/j.gastro.2018.02.019
        • Berkhout L.
        • Barikbin R.
        • Schiller B.
        • Ravichandran G.
        • Krech T.
        • Neumann K.
        • et al.
        Deletion of tumour necrosis factor alpha receptor 1 elicits an increased TH17 immune response in the chronically inflamed liver.
        Sci Rep. 2019; 9: 4232https://doi.org/10.1038/s41598-019-40324-z
        • Shi F.D.
        • Ljunggren H.G.
        • La Cava A.
        • Van Kaer L.
        Organ-specific features of natural killer cells.
        Nat Rev Immunol. 2011; 11: 658-671https://doi.org/10.1038/nri3065
        • Bhat P.
        • Leggatt G.
        • Waterhouse N.
        • Frazer I.H.
        Interferon-gamma derived from cytotoxic lymphocytes directly enhances their motility and cytotoxicity.
        Cell Death Dis. 2017; 8e2836https://doi.org/10.1038/cddis.2017.67
        • Mailliard R.B.
        • Son Y.I.
        • Redlinger R.
        • Coates P.T.
        • Giermasz A.
        • Morel P.A.
        • et al.
        Dendritic cells mediate NK cell help for Th1 and CTL responses: two-signal requirement for the induction of NK cell helper function.
        J Immunol. 2003; 171: 2366-2373
        • Wong J.L.
        • Berk E.
        • Edwards R.P.
        • Kalinski P.
        IL-18-primed helper NK cells collaborate with dendritic cells to promote recruitment of effector CD8+ T cells to the tumor microenvironment.
        Cancer Res. 2013; 73: 4653-4662https://doi.org/10.1158/0008-5472.CAN-12-4366
        • Robbins S.H.
        • Bessou G.
        • Cornillon A.
        • Zucchini N.
        • Rupp B.
        • Ruzsics Z.
        • et al.
        Natural killer cells promote early CD8 T cell responses against cytomegalovirus.
        PLoS Pathog. 2007; 3e123https://doi.org/10.1371/journal.ppat.0030123
        • Peppa D.
        • Gill U.S.
        • Reynolds G.
        • Easom N.J.
        • Pallett L.J.
        • Schurich A.
        • et al.
        Up-regulation of a death receptor renders antiviral T cells susceptible to NK cell-mediated deletion.
        J Exp Med. 2013; 210: 99-114https://doi.org/10.1084/jem.20121172
        • Schuch A.
        • Hoh A.
        • Thimme R.
        The role of natural killer cells and CD8(+) T cells in hepatitis B virus infection.
        Front Immunol. 2014; 5: 258https://doi.org/10.3389/fimmu.2014.00258
        • Weng H.
        • Mertens P.R.
        • Gressner A.M.
        • Dooley S.
        IFN-gamma abrogates profibrogenic TGF-beta signaling in liver by targeting expression of inhibitory and receptor Smads.
        J Hepatol. 2007; 46: 295-303https://doi.org/10.1016/j.jhep.2006.09.014
        • Karlsen T.H.
        • Boberg K.M.
        • Olsson M.
        • Sun J.Y.
        • Senitzer D.
        • Bergquist A.
        • et al.
        Particular genetic variants of ligands for natural killer cell receptors may contribute to the HLA associated risk of primary sclerosing cholangitis.
        J Hepatol. 2007; 46: 899-906https://doi.org/10.1016/j.jhep.2007.01.032
        • Van Steenbergen W.
        • De Goede E.
        • Emonds M.P.
        • Reinders J.
        • Tilanus M.
        • Fevery J.
        Primary sclerosing cholangitis in two brothers: report of a family with special emphasis on molecular HLA and MICA genotyping.
        Eur J Gastroenterol Hepatol. 2005; 17: 767-771
        • Stegmann K.A.
        • Robertson F.
        • Hansi N.
        • Gill U.
        • Pallant C.
        • Christophides T.
        • et al.
        CXCR6 marks a novel subset of T-bet(lo)Eomes(hi) natural killer cells residing in human liver.
        Sci Rep. 2016; 6: 26157https://doi.org/10.1038/srep26157
        • Takeda K.
        • Kojima Y.
        • Ikejima K.
        • Harada K.
        • Yamashina S.
        • Okumura K.
        • et al.
        Death receptor 5 mediated-apoptosis contributes to cholestatic liver disease.
        Proc Natl Acad Sci U S A. 2008; 105: 10895-10900https://doi.org/10.1073/pnas.0802702105