Advertisement

Comparative characterization of B cells specific for HBV nucleocapsid and envelope proteins in patients with chronic hepatitis B

      Highlights

      • We developed a method for direct ex vivo visualization of HBV-specific B cells.
      • HBcAg- and HBsAg-specific B cells of patients with CHB differ in phenotype and function.
      • HBcAg-specific B cells are class-switched memory B cells and secrete antibodies.
      • HBV-specific B cells express cross-presentation and innate immune genes.
      • HBV-specific B cell’s functional profiles shadow serological data of patients with CHB.

      Background & Aims

      Knowledge about the regulation of anti-HBV humoral immunity during natural HBV infection is limited. We recently utilized dual fluorochrome-conjugated HBsAg to demonstrate, in patients with chronic HBV (CHB) infection, the functional impairment of their HBsAg-specific B cells. However, the features of their HBcAg-specific B cells are unknown. Here we developed a method to directly visualize, select and characterize HBcAg-specific B cells in parallel with HBsAg-specific B cells.

      Methods

      Fluorochrome-conjugated HBcAg reagents were synthesized and utilized to directly detect ex vivo HBcAg-specific B cells in 36 patients with CHB. The frequency, phenotype, functional maturation and transcriptomic profile of HBcAg-specific B cells was studied by flow cytometry, in vitro maturation assays and NanoString-based detection of expression of immune genes, which we compared with HBsAg-specific B cells and total B cells.

      Results

      HBcAg-specific B cells are present at a higher frequency than HBsAg-specific B cells in patients with CHB and, unlike HBsAg-specific B cells, they mature efficiently into antibody-secreting cells in vitro. Their phenotypic and transcriptomic profiles show that HBcAg-specific B cells are preferentially IgG+ memory B cells. However, despite their phenotypic and functional differences, HBcAg- and HBsAg-specific B cells from patients with CHB share an mRNA expression pattern that differs from global memory B cells and is characterized by high expression of genes indicative of cross-presentation and innate immune activity.

      Conclusions

      During chronic HBV infection, a direct relation exists between serological detection of anti-HBs and anti-HBc antibodies, and the quantity and function of their respective specific B cells. However, the transcriptomic analysis performed in HBsAg- and HBcAg-specific B cells suggests additional roles of HBV-specific B cells beyond the production of antibodies.

      Lay summary

      Protection of viral infection necessitates the production of antibodies that are generated by specialized cells of the immune system called B cells. During chronic HBV infection, antibodies against the internal part of the virus (core or HBcAg) are detectable while the antibodies directed against the virus envelope (surface or HBsAg) are not present. Here we developed a method that allows us to directly visualize ex vivo the B cells specific for these 2 viral components, highlighting their differences and similarities, and showing how 2 components of the same virus can have different impacts on the function of antiviral B cells.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment
      Subscribe to Journal of Hepatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      Author names in bold designate shared co-first authorship

        • Stanaway J.D.
        • Flaxman A.D.
        • Naghavi M.
        • Fitzmaurice C.
        • Vos T.
        • Abubakar I.
        • et al.
        The global burden of viral hepatitis from 1990 to 2013: findings from the Global Burden of Disease Study 2013.
        Lancet. 2016; : 1-8
        • Bertoletti A.
        • Ferrari C.
        Adaptive immunity in HBV infection.
        J Hepatol. 2016; 64: S71-S83
        • Böcher W.O.
        • Herzog-Hauff S.
        • Herr W.
        • Heermann K.
        • Gerken G.
        • Meyer Zum Büschenfelde K.H.
        • et al.
        Regulation of the neutralizing anti-hepatitis B surface (HBs) antibody response in vitro in HBs vaccine recipients and patients with acute or chronic hepatitis B virus (HBV) infection.
        Clin Exp Immunol. 1996; 105: 52-58
        • Salimzadeh L.
        • Le Bert N.
        • Dutertre C.-A.
        • Gill U.S.
        • Newell E.W.
        • Frey C.
        • et al.
        PD-1 blockade partially recovers dysfunctional virus-specific B cells in chronic hepatitis B infection.
        J Clin Invest. 2018; 128: 4573-4587
        • Burton A.R.
        • Pallett L.J.
        • McCoy L.E.
        • Suveizdyte K.
        • Amin O.E.
        • Swadling L.
        • et al.
        Circulating and intrahepatic antiviral B cells are defective in hepatitis B.
        J Clin Invest. 2018; 128: 4588-4603
        • Maruyama T.
        • Schödel F.
        • Iino S.
        • Koike K.
        • Yasuda K.
        • Peterson D.
        • et al.
        Distinguishing between acute and symptomatic chronic hepatitis B virus infection.
        Gastroenterology. 1994; 106: 1006-1015
        • Webster G.J.M.
        • Reignat S.
        • Brown D.
        • Ogg G.S.
        • Jones L.
        • Seneviratne S.L.
        • et al.
        Longitudinal analysis of CD8+ T cells specific for structural and nonstructural hepatitis B virus proteins in patients with chronic hepatitis B: implications for immunotherapy.
        J Virol. 2004; 78: 5707-5719
        • Boni C.
        • Laccabue D.
        • Lampertico P.
        • Giuberti T.
        • Viganò M.
        • Schivazappa S.
        • et al.
        Restored function of HBV-specific T cells after long-term effective therapy with nucleos(t)ide analogues.
        Gastroenterology. 2012; 143: 963-969
        • Chen Z.
        • Diaz G.
        • Pollicino T.
        • Zhao H.
        • Engle R.E.
        • Schuck P.
        • et al.
        Role of humoral immunity against hepatitis B virus core antigen in the pathogenesis of acute liver failure.
        Proc Nat Acad Sci. 2018; 115: E11369-E11378
        • Corti D.
        • Benigni F.
        • Shouval D.
        Viral envelope-specific antibodies in chronic hepatitis B virus infection.
        Curr Op Virol. 2018; 30: 48-57
        • Maruyama T.
        • McLachlan A.
        • Iino S.
        • Koike K.
        • Kurokawa K.
        • Milich D.R.
        The serology of chronic hepatitis B infection revisited.
        J Clin Invest. 1993; 91: 2586-2595
        • Milich D.R.
        • McLachlan A.
        The nucleocapsid of hepatitis B virus is both a T-cell-independent and a T-cell-dependent antigen.
        Science. 1986; 234: 1398-1401
        • Venkatakrishnan B.
        • Zlotnick A.
        The structural biology of hepatitis B virus: form and function.
        Annu Rev Virol. 2016; 3: 429-451
        • Lazdina U.
        • Cao T.
        • Steinbergs J.
        • Alheim M.
        • Pumpens P.
        • Peterson D.L.
        • et al.
        Molecular basis for the interaction of the hepatitis B virus core antigen with the surface immunoglobulin receptor on naive B cells.
        J Virol. 2001; 75: 6367-6374
        • Watts N.R.
        • Cardone G.
        • Vethanayagam J.G.
        • Cheng N.
        • Hultgren C.
        • Stahl S.J.
        • et al.
        Non-canonical binding of an antibody resembling a naïve B cell receptor immunoglobulin to hepatitis B virus capsids.
        J Mol Biol. 2008; 379: 1119-1129
        • Cao T.
        • Lazdina U.
        • Desombere I.
        • Vanlandschoot P.
        • Milich D.R.
        • Sallberg M.
        • et al.
        Hepatitis B Virus Core Antigen Binds and Activates Naive Human B Cells In Vivo: Studies with a Human PBL-NOD/SCID Mouse Model.
        J Virol. 2001; 75: 6359-6366
        • Kojima M.
        • Udo K.
        • Takahashi Y.
        • Yoshizawa H.
        • Tsuda F.
        • Itoh Y.
        • et al.
        Correlation between titer of antibody to hepatitis B core antigen and presence of viral antigens in the liver.
        Gastroenterology. 1977; 73: 664-667
        • Becht E.
        • McInnes L.
        • Healy J.
        • Dutertre C.-A.
        • Kwok I.W.H.
        • Ng L.G.
        • et al.
        Dimensionality reduction for visualizing single-cell data using UMAP.
        Nat Biotechnol. 2018; 37: 38-44
        • Huang J.
        • Doria-Rose N.A.
        • Longo N.S.
        • Laub L.
        • Lin C.-L.
        • Turk E.
        • et al.
        Isolation of human monoclonal antibodies from peripheral blood B cells.
        Nat Protoc. 2013; 8: 1907-1915
        • Park C.K.
        • Shin Y.K.
        • Kim T.J.
        • Park S.H.
        • Ahn G.H.
        High CD99 expression in memory T and B cells in reactive lymph nodes.
        J Korean Med Sci. 1999; 14: 600-606
        • Cassese G.
        • Arce S.
        • Hauser A.E.
        • Lehnert K.
        • Moewes B.
        • Mostarac M.
        • et al.
        Plasma cell survival is mediated by synergistic effects of cytokines and adhesion-dependent signals.
        J Immunol. 2003; 171: 1684-1690
        • Muehlinghaus G.
        • Cigliano L.
        • Huehn S.
        • Peddinghaus A.
        • Leyendeckers H.
        • Hauser A.E.
        • et al.
        Regulation of CXCR3 and CXCR4 expression during terminal differentiation of memory B cells into plasma cells.
        Blood. 2005; 105: 3965-3971
        • Ise W.
        • Kohyama M.
        • Schraml B.U.
        • Zhang T.
        • Schwer B.
        • Basu U.
        • et al.
        The transcription factor BATF controls the global regulators of class-switch recombination in both B cells and T cells.
        Nat Immunol. 2011; 12: 536-543
        • Sanz I.
        • Wei C.
        • Lee F.E.-H.
        • Anolik J.
        Phenotypic and functional heterogeneity of human memory B cells.
        Sem Immunol. 2008; 20: 67-82
        • Cazac B.B.
        • Roes J.
        TGF-beta receptor controls B cell responsiveness and induction of IgA in vivo.
        Immunity. 2000; 13: 443-451
        • Wilkinson R.
        • Lyons A.B.
        • Roberts D.
        • Wong M.-X.
        • Bartley P.A.
        • Jackson D.E.
        Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) acts as a regulator of B-cell development, B-cell antigen receptor (BCR)-mediated activation, and autoimmune disease.
        Blood. 2002; 100: 184-193
        • Peng S.L.
        • Gerth A.J.
        • Ranger A.M.
        • Glimcher L.H.
        NFATc1 and NFATc2 together control both T and B cell activation and differentiation.
        Immunity. 2001; 14: 13-20
        • Cerutti A.
        • Cols M.
        • Puga I.
        Marginal zone B cells: virtues of innate-like antibody-producing lymphocytes.
        Nat Rev Immunol. 2013; 13: 118-132
        • Kroczek R.A.
        • Henn V.
        The role of XCR1 and its ligand XCL1 in antigen cross-presentation by murine and human dendritic cells.
        Front Immunol. 2012; 3: 14
        • Silverman G.J.
        • Goodyear C.S.
        Confounding B-cell defences: lessons from a staphylococcal superantigen.
        Nat Rev Immunol. 2006; 6: 465-475
        • Oliviero B.
        • Cerino A.
        • Varchetta S.
        • Paudice E.
        • Pai S.
        • Ludovisi S.
        • et al.
        Enhanced B-cell differentiation and reduced proliferative capacity in chronic hepatitis C and chronic hepatitis B virus infections.
        J Hepatol. 2011; 55: 53-60
        • Das A.
        • Ellis G.
        • Pallant C.
        • Lopes A.R.
        • Khanna P.
        • Peppa D.
        • et al.
        IL-10-producing regulatory B cells in the pathogenesis of chronic hepatitis B virus infection.
        J Immunol. 2012; 189: 3925-3935
        • Vanwolleghem T.
        • Hou J.
        • van Oord G.
        • Andeweg A.C.
        • Osterhaus A.D.M.E.
        • Pas S.D.
        • et al.
        Re-evaluation of hepatitis B virus clinical phases by systems biology identifies unappreciated roles for the innate immune response and B cells.
        Hepatology. 2015; 62: 87-100
        • Boisvert M.
        • Zhang W.
        • Elrod E.J.
        • Bernard N.F.
        • Villeneuve J.-P.
        • Bruneau J.
        • et al.
        Novel E2 glycoprotein tetramer detects hepatitis C virus-specific memory B cells.
        J Immunol. 2016; 197: 4848-4858
        • Hu J.
        • Liu K.
        Complete and incomplete hepatitis B virus particles: formation, function, and application.
        Viruses. 2017; 9https://doi.org/10.3390/v9030056
        • Bohne F.
        • Chmielewski M.
        • Ebert G.
        • Wiegmann K.
        • Kürschner T.
        • Schulze A.
        • et al.
        T cells redirected against hepatitis B virus surface proteins eliminate infected hepatocytes.
        Gastroenterology. 2008; 134: 239-247
        • Beterams G.
        • Nassal M.
        Significant interference with hepatitis B virus replication by a core-nuclease fusion protein.
        J Biol Chem. 2001; 276: 8875-8883
        • Bardens A.
        • Döring T.
        • Stieler J.
        • Prange R.
        Alix regulates egress of hepatitis B virus naked capsid particles in an ESCRT-independent manner.
        Cell Microbiol. 2010; 13: 602-619
        • Chu C.M.
        • Yeh C.T.
        • Sheen I.S.
        • Liaw Y.F.
        Subcellular localization of hepatitis B core antigen in relation to hepatocyte regeneration in chronic hepatitis B.
        Gastroenterology. 1995; 109: 1926-1932
        • Khakpoor A.
        • Ni Y.
        • Chen A.
        • Ho Z.Z.
        • Oei V.
        • Yang N.
        • et al.
        Spatiotemporal differences in presentation of CD8 T cell epitopes during hepatitis B virus infection.
        J Virol. 2019; 93: 287-318
        • Pasquetto V.
        • Wieland S.
        • Chisari F.V.
        Intracellular hepatitis B virus nucleocapsids survive cytotoxic T-lymphocyte-induced apoptosis.
        J Virol. 2000; 74: 9792-9796
        • Chaturvedi A.
        • Dorward D.
        • Pierce S.K.
        The B cell receptor governs the subcellular location of Toll-like receptor 9 leading to hyperresponses to DNA-containing antigens.
        Immunity. 2008; 28: 799-809
        • Lau C.M.
        • Broughton C.
        • Tabor A.S.
        • Akira S.
        • Flavell R.A.
        • Mamula M.J.
        • et al.
        RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement.
        J Exp Med. 2005; 202: 1171-1177
        • Lee B.O.
        • Tucker A.
        • Frelin L.
        • Sällberg M.
        • Jones J.
        • Peters C.
        • et al.
        Interaction of the hepatitis B core antigen and the innate immune system.
        J Immunol. 2009; 182: 6670-6681