Advertisement

Autophagy in hepatic adaptation to stress

  • Younis Hazari
    Affiliations
    Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile

    FONDAP Center for Geroscience (GERO), Brain Health and Metabolism, Santiago, Chile

    Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
    Search for articles by this author
  • José Manuel Bravo-San Pedro
    Affiliations
    Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France
    Search for articles by this author
  • Claudio Hetz
    Correspondence
    Corresponding authors. Addresses: Program of Cellular and Molecular Biology, Second Floor, Sector B, Institute of Biomedical Sciences, University of Chile, Independencia 1027, Santiago, P.O. BOX 70086, Chile. Tel.: +56-2-2978-6506 (C. Hetz); or Centre de Recherche des Cordeliers, Team 11, 15 rue de l’Ecole de Médecine, 75005 Paris, France. Tel.: +33-1-4427-7667 (G. Kroemer).
    Affiliations
    Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile

    FONDAP Center for Geroscience (GERO), Brain Health and Metabolism, Santiago, Chile

    Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile

    Buck Institute for Research in Aging, Novato, CA, USA
    Search for articles by this author
  • Author Footnotes
    † Share senior co-authorship.
    Lorenzo Galluzzi
    Footnotes
    † Share senior co-authorship.
    Affiliations
    Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA

    Sandra and Edward Meyer Cancer Center, New York, NY, USA

    Department of Dermatology, Yale School of Medicine, New Haven, CT, USA

    Université Paris Descartes/Paris V, Paris, France
    Search for articles by this author
  • Author Footnotes
    † Share senior co-authorship.
    Guido Kroemer
    Correspondence
    Corresponding authors. Addresses: Program of Cellular and Molecular Biology, Second Floor, Sector B, Institute of Biomedical Sciences, University of Chile, Independencia 1027, Santiago, P.O. BOX 70086, Chile. Tel.: +56-2-2978-6506 (C. Hetz); or Centre de Recherche des Cordeliers, Team 11, 15 rue de l’Ecole de Médecine, 75005 Paris, France. Tel.: +33-1-4427-7667 (G. Kroemer).
    Footnotes
    † Share senior co-authorship.
    Affiliations
    Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France

    Université Paris Descartes/Paris V, Paris, France

    Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France

    Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France

    Suzhou Institute for Systems Medicine, Chinese Academy of Sciences, Suzhou, China

    Department of Women's and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
    Search for articles by this author
  • Author Footnotes
    † Share senior co-authorship.

      Summary

      Autophagy is an evolutionarily ancient process whereby eukaryotic cells eliminate disposable or potentially dangerous cytoplasmic material, to support bioenergetic metabolism and adapt to stress. Accumulating evidence indicates that autophagy operates as a critical quality control mechanism for the maintenance of hepatic homeostasis in both parenchymal (hepatocytes) and non-parenchymal (stellate cells, sinusoidal endothelial cells, Kupffer cells) compartments. In line with this notion, insufficient autophagy has been aetiologically involved in the pathogenesis of multiple liver disorders, including alpha-1-antitrypsin deficiency, Wilson disease, non-alcoholic steatohepatitis, liver fibrosis and hepatocellular carcinoma. Here, we critically discuss the importance of functional autophagy for hepatic physiology, as well as the mechanisms whereby defects in autophagy cause liver disease.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Hepatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Galluzzi L.
        • Baehrecke E.H.
        • Ballabio A.
        • Boya P.
        • Bravo-San Pedro J.M.
        • Cecconi F.
        • et al.
        Molecular definitions of autophagy and related processes.
        EMBO J. 2017; 36: 1811-1836
        • Dikic I.
        • Elazar Z.
        Mechanism and medical implications of mammalian autophagy.
        Nat Rev Mol Cell Biol. 2018; 19: 349-364
        • De Duve C.
        • Wattiaux R.
        Functions of lysosomes.
        Annu Rev Physiol. 1966; 28: 435-492
        • Appelmans F.
        • Wattiaux R.
        • De Duve C.
        Tissue fractionation studies. 5. The association of acid phosphatase with a special class of cytoplasmic granules in rat liver.
        Biochem J. 1955; 59: 438-445
        • De Duve C.
        • Pressman B.C.
        • Gianetto R.
        • Wattiaux R.
        • Appelmans F.
        Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue.
        Biochem J. 1955; 60: 604-617
        • Novikoff A.B.
        • Beaufay H.
        • De Duve C.
        Electron microscopy of lysosomerich fractions from rat liver.
        J Biophys Biochem Cytol. 1956; 2: 179-184
        • Beaufay H.
        • Bendall D.S.
        • Baudhun P.
        • Wattiaux R.
        • De Duve C.
        Tissue fractionation studies. 13. Analysis of mitochondrial fractions from rat liver by density-gradient centrifuging.
        Biochem J. 1959; 73: 628-637
        • Straus W.
        Rapid cytochemical identification of phagosomes in various tissues of the rat and their differentiation from mitochondria by the peroxidase method.
        J Biophys Biochem Cytol. 1959; 5: 193-204
        • Essner E.
        • Novikoff A.B.
        Localization of acid phosphatase activity in hepatic lysosomes by means of electron microscopy.
        J Biophys Biochem Cytol. 1961; 9: 773-784
        • Ashford T.P.
        • Porter K.R.
        Cytoplasmic components in hepatic cell lysosomes.
        J Cell Biol. 1962; 12: 198-202
        • Moe H.
        • Behnke O.
        Cytoplasmic bodies containing mitochondria, ribosomes, and rough surfaced endoplasmic membranes in the epithelium of the small intestine of newborn rats.
        J Cell Biol. 1962; 13: 168-171
        • Straus W.
        Cytochemical observations on the relationship between lysosomes and phagosomes in kidney and liver by combined staining for acid phosphatase and intravenously injected horseradish peroxidase.
        J Cell Biol. 1964; 20: 497-507
        • Miller L.L.
        Glucagon: a protein catabolic hormone in the isolated perfused rat liver.
        Nature. 1960; 185: 248
        • Kaushik S.
        • Cuervo A.M.
        The coming of age of chaperone-mediated autophagy.
        Nat Rev Mol Cell Biol. 2018; 19: 365-381
        • Sica V.
        • Galluzzi L.
        • Bravo-San Pedro J.M.
        • Izzo V.
        • Maiuri M.C.
        • Kroemer G.
        Organelle-specific initiation of autophagy.
        Mol Cell. 2015; 59: 522-539
        • Farre J.C.
        • Subramani S.
        Mechanistic insights into selective autophagy pathways: lessons from yeast.
        Nat Rev Mol Cell Biol. 2016; 17: 537-552
        • Levine B.
        • Kroemer G.
        Biological functions of autophagy genes: a disease perspective.
        Cell. 2019; 176: 11-42
        • Galluzzi L.
        • Yamazaki T.
        • Kroemer G.
        Linking cellular stress responses to systemic homeostasis.
        Nat Rev Mol Cell Biol. 2018; 19: 731-745
        • Ueno T.
        • Komatsu M.
        Autophagy in the liver: functions in health and disease.
        Nat Rev Gastroenterol Hepatol. 2017; 14: 170-184
        • Allaire M.
        • Rautou P.E.
        • Codogno P.
        • Lotersztajn S.
        Autophagy in liver diseases: time for translation?.
        J Hepatol. 2019; 70: 985-998
        • Kroemer G.
        • Marino G.
        • Levine B.
        Autophagy and the integrated stress response.
        Mol Cell. 2010; 40: 280-293
        • Galluzzi L.
        • Pietrocola F.
        • Bravo-San Pedro J.M.
        • Amaravadi R.K.
        • Baehrecke E.H.
        • Cecconi F.
        • et al.
        Autophagy in malignant transformation and cancer progression.
        EMBO J. 2015; 34: 856-880
        • Singh R.
        • Kaushik S.
        • Wang Y.
        • Xiang Y.
        • Novak I.
        • Komatsu M.
        • et al.
        Autophagy regulates lipid metabolism.
        Nature. 2009; 458: 1131-1135
        • Galluzzi L.
        • Pietrocola F.
        • Levine B.
        • Kroemer G.
        Metabolic control of autophagy.
        Cell. 2014; 159: 1263-1276
        • Mizushima N.
        • Levine B.
        • Cuervo A.M.
        • Klionsky D.J.
        Autophagy fights disease through cellular self-digestion.
        Nature. 2008; 451: 1069-1075
        • Deretic V.
        • Levine B.
        Autophagy balances inflammation in innate immunity.
        Autophagy. 2018; 14: 243-251
        • Xie M.
        • Yang Z.
        • Liu Y.
        • Zheng M.
        The role of HBV-induced autophagy in HBV replication and HBV related-HCC.
        Life Sci. 2018; 205: 107-112
        • Galluzzi L.
        • Green D.R.
        Autophagy-independent functions of the autophagy machinery.
        Cell. 2019; 177: 1682-1699
        • Ueno T.
        • Ezaki J.
        • Kominami E.
        Metabolic contribution of hepatic autophagic proteolysis: old wine in new bottles.
        Biochim Biophys Acta. 2012; 1824: 51-58
        • Kirschke H.
        • Langner J.
        • Wiederanders B.
        • Ansorge S.
        • Bohley P.
        Cathepsin L. A new proteinase from rat-liver lysosomes.
        Eur J Biochem. 1977; 74: 293-301
        • Schworer C.M.
        • Shiffer K.A.
        • Mortimore G.E.
        Quantitative relationship between autophagy and proteolysis during graded amino acid deprivation in perfused rat liver.
        J Biol Chem. 1981; 256: 7652-7658
        • Mortimore G.E.
        • Hutson N.J.
        • Surmacz C.A.
        Quantitative correlation between proteolysis and macro- and microautophagy in mouse hepatocytes during starvation and refeeding.
        Proc Natl Acad Sci U S A. 1983; 80: 2179-2183
        • Anding A.L.
        • Baehrecke E.H.
        Cleaning house: selective autophagy of organelles.
        Dev Cell. 2017; 41: 10-22
        • Hetz C.
        • Papa F.R.
        The unfolded protein response and cell fate control.
        Mol Cell. 2018; 69: 169-181
        • Hetz C.
        • Chevet E.
        • Harding H.P.
        Targeting the unfolded protein response in disease.
        Nat Rev Drug Discov. 2013; 12: 703-719
        • Ellgaard L.
        • Sevier C.S.
        • Bulleid N.J.
        How are proteins reduced in the endoplasmic reticulum?.
        Trends Biochem Sci. 2018; 43: 32-43
        • Schwarz D.S.
        • Blower M.D.
        The endoplasmic reticulum: structure, function and response to cellular signaling.
        Cell Mol Life Sci. 2016; 73: 79-94
        • Grumati P.
        • Dikic I.
        • Stolz A.
        ER-phagy at a glance.
        J Cell Sci. 2018; 131: jcs217364
        • Gatica D.
        • Lahiri V.
        • Klionsky D.J.
        Cargo recognition and degradation by selective autophagy.
        Nat Cell Biol. 2018; 20: 233-242
        • Grumati P.
        • Morozzi G.
        • Holper S.
        • Mari M.
        • Harwardt M.I.
        • Yan R.
        • et al.
        Full length RTN3 regulates turnover of tubular endoplasmic reticulum via selective autophagy.
        Elife. 2017; 6
        • Khaminets A.
        • Heinrich T.
        • Mari M.
        • Grumati P.
        • Huebner A.K.
        • Akutsu M.
        • et al.
        Regulation of endoplasmic reticulum turnover by selective autophagy.
        Nature. 2015; 522: 354-358
        • Smith M.D.
        • Harley M.E.
        • Kemp A.J.
        • Wills J.
        • Lee M.
        • Arends M.
        • et al.
        CCPG1 is a non-canonical autophagy cargo receptor essential for ER-phagy and pancreatic ER proteostasis.
        Dev Cell. 2018; 44 (217–32 e11)
        • Mochida K.
        • Oikawa Y.
        • Kimura Y.
        • Kirisako H.
        • Hirano H.
        • Ohsumi Y.
        • et al.
        Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus.
        Nature. 2015; 522: 359-362
        • Yamamoto Y.
        • Sakisaka T.
        The peroxisome biogenesis factors posttranslationally target reticulon homology domain-containing proteins to the endoplasmic reticulum membrane.
        Sci Rep. 2018; 8: 2322
        • Niso-Santano M.
        • Malik S.A.
        • Pietrocola F.
        • Bravo-San Pedro J.M.
        • Marino G.
        • Cianfanelli V.
        • et al.
        Unsaturated fatty acids induce non-canonical autophagy.
        EMBO J. 2015; 34: 1025-1041
        • Pang L.
        • Liu K.
        • Liu D.
        • Lv F.
        • Zang Y.
        • Xie F.
        • et al.
        Differential effects of reticulophagy and mitophagy on nonalcoholic fatty liver disease.
        Cell Death Dis. 2018; 9: 90
        • Yang H.
        • Ni H.M.
        • Guo F.
        • Ding Y.
        • Shi Y.H.
        • Lahiri P.
        • et al.
        Sequestosome 1/p62 protein is associated with autophagic removal of excess hepatic endoplasmic reticulum in mice.
        J Biol Chem. 2016; 291: 18663-18674
        • Forrester A.
        • De Leonibus C.
        • Grumati P.
        • Fasana E.
        • Piemontese M.
        • Staiano L.
        • et al.
        A selective ER-phagy exerts procollagen quality control via a Calnexin-FAM134B complex.
        EMBO J. 2019; 38
        • Gluchowski N.L.
        • Becuwe M.
        • Walther T.C.
        • Farese Jr., R.V.
        Lipid droplets and liver disease: from basic biology to clinical implications.
        Nat Rev Gastroenterol Hepatol. 2017; 14: 343-355
        • Walther T.C.
        • Chung J.
        • Farese Jr., R.V.
        Lipid droplet biogenesis.
        Annu Rev Cell Dev Biol. 2017; 33: 491-510
        • Prinz W.A.
        A bridge to understanding lipid droplet growth.
        Dev Cell. 2013; 24: 335-336
        • Renvoise B.
        • Malone B.
        • Falgairolle M.
        • Munasinghe J.
        • Stadler J.
        • Sibilla C.
        • et al.
        Reep1 null mice reveal a converging role for hereditary spastic paraplegia proteins in lipid droplet regulation.
        Hum Mol Genet. 2016; 25: 5111-5125
        • Wilfling F.
        • Thiam A.R.
        • Olarte M.J.
        • Wang J.
        • Beck R.
        • Gould T.J.
        • et al.
        Arf1/COPI machinery acts directly on lipid droplets and enables their connection to the ER for protein targeting.
        Elife. 2014; 3e01607
        • Soni K.G.
        • Mardones G.A.
        • Sougrat R.
        • Smirnova E.
        • Jackson C.L.
        • Bonifacino J.S.
        Coatomer-dependent protein delivery to lipid droplets.
        J Cell Sci. 2009; 122: 1834-1841
        • Houten S.M.
        • Violante S.
        • Ventura F.V.
        • Wanders R.J.
        The biochemistry and physiology of mitochondrial fatty acid beta-oxidation and its genetic disorders.
        Annu Rev Physiol. 2016; 78: 23-44
        • Pietrocola F.
        • Galluzzi L.
        • Bravo-San Pedro J.M.
        • Madeo F.
        • Kroemer G.
        Acetyl coenzyme A: a central metabolite and second messenger.
        Cell Metab. 2015; 21: 805-821
        • Zechner R.
        • Madeo F.
        • Kratky D.
        Cytosolic lipolysis and lipophagy: two sides of the same coin.
        Nat Rev Mol Cell Biol. 2017; 18: 671-684
        • Rui L.
        Energy metabolism in the liver.
        Compr Physiol. 2014; 4: 177-197
        • Galluzzi L.
        • Bravo-San Pedro J.M.
        • Levine B.
        • Green D.R.
        • Kroemer G.
        Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles.
        Nat Rev Drug Discov. 2017; 16: 487-511
        • Schulze R.J.
        • Drizyte K.
        • Casey C.A.
        • McNiven M.A.
        Hepatic lipophagy: new insights into autophagic catabolism of lipid droplets in the liver.
        Hepatol Commun. 2017; 1: 359-369
        • Zubiete-Franco I.
        • Garcia-Rodriguez J.L.
        • Martinez-Una M.
        • Martinez-Lopez N.
        • Woodhoo A.
        • Juan V.G.
        • et al.
        Methionine and S-adenosylmethionine levels are critical regulators of PP2A activity modulating lipophagy during steatosis.
        J Hepatol. 2016; 64: 409-418
        • Lettieri Barbato D.
        • Tatulli G.
        • Aquilano K.
        • Ciriolo M.R.
        FoxO1 controls lysosomal acid lipase in adipocytes: implication of lipophagy during nutrient restriction and metformin treatment.
        Cell Death Dis. 2013; 4e861
        • Vidal R.L.
        • Figueroa A.
        • Court F.A.
        • Thielen P.
        • Molina C.
        • Wirth C.
        • et al.
        Targeting the UPR transcription factor XBP1 protects against Huntington’s disease through the regulation of FoxO1 and autophagy.
        Hum Mol Genet. 2012; 21: 2245-2262
        • Schroeder B.
        • Schulze R.J.
        • Weller S.G.
        • Sletten A.C.
        • Casey C.A.
        • McNiven M.A.
        The small GTPase Rab7 as a central regulator of hepatocellular lipophagy.
        Hepatology. 2015; 61: 1896-1907
        • Schulze R.J.
        • Rasineni K.
        • Weller S.G.
        • Schott M.B.
        • Schroeder B.
        • Casey C.A.
        • et al.
        Ethanol exposure inhibits hepatocyte lipophagy by inactivating the small guanosine triphosphatase Rab7.
        Hepatol Commun. 2017; 1: 140-152
        • Li C.
        • Luo X.
        • Zhao S.
        • Siu G.K.
        • Liang Y.
        • Chan H.C.
        • et al.
        COPI-TRAPPII activates Rab18 and regulates its lipid droplet association.
        EMBO J. 2017; 36: 441-457
        • Li Z.
        • Schulze R.J.
        • Weller S.G.
        • Krueger E.W.
        • Schott M.B.
        • Zhang X.
        • et al.
        A novel Rab10-EHBP1-EHD2 complex essential for the autophagic engulfment of lipid droplets.
        Sci Adv. 2016; 2e1601470
        • Settembre C.
        • De Cegli R.
        • Mansueto G.
        • Saha P.K.
        • Vetrini F.
        • Visvikis O.
        • et al.
        TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop.
        Nat Cell Biol. 2013; 15: 647-658
        • Kaushik S.
        • Cuervo A.M.
        Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis.
        Nat Cell Biol. 2015; 17: 759-770
        • Maus M.
        • Cuk M.
        • Patel B.
        • Lian J.
        • Ouimet M.
        • Kaufmann U.
        • et al.
        Store-operated Ca(2+) entry controls induction of lipolysis and the transcriptional reprogramming to lipid metabolism.
        Cell Metab. 2017; 25: 698-712
        • Sinha R.A.
        • Farah B.L.
        • Singh B.K.
        • Siddique M.M.
        • Li Y.
        • Wu Y.
        • et al.
        Caffeine stimulates hepatic lipid metabolism by the autophagy-lysosomal pathway in mice.
        Hepatology. 2014; 59: 1366-1380
        • Ding W.X.
        Drinking coffee burns hepatic fat by inducing lipophagy coupled with mitochondrial beta-oxidation.
        Hepatology. 2014; 59: 1235-1238
        • Pietrocola F.
        • Malik S.A.
        • Marino G.
        • Vacchelli E.
        • Senovilla L.
        • Chaba K.
        • et al.
        Coffee induces autophagy in vivo.
        Cell Cycle. 2014; 13: 1987-1994
        • Brandt A.
        • Nier A.
        • Jin C.J.
        • Baumann A.
        • Jung F.
        • Ribas V.
        • et al.
        Consumption of decaffeinated coffee protects against the development of early non-alcoholic steatohepatitis: role of intestinal barrier function.
        Redox Biol. 2019; 21101092
        • Setiawan V.W.
        • Wilkens L.R.
        • Lu S.C.
        • Hernandez B.Y.
        • Le Marchand L.
        • Henderson B.E.
        Association of coffee intake with reduced incidence of liver cancer and death from chronic liver disease in the US multiethnic cohort.
        Gastroenterology. 2015; 148 (118–25; quiz e15)
        • Xiao Q.
        • Sinha R.
        • Graubard B.I.
        • Freedman N.D.
        Inverse associations of total and decaffeinated coffee with liver enzyme levels in National Health and Nutrition Examination Survey 1999–2010.
        Hepatology. 2014; 60: 2091-2098
        • Galluzzi L.
        • Vitale I.
        • Aaronson S.A.
        • Abrams J.M.
        • Adam D.
        • Agostinis P.
        • et al.
        Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.
        Cell Death Differ. 2018; 25: 486-541
        • Hamlin A.N.
        • Basford J.E.
        • Jaeschke A.
        • Hui D.Y.
        LRP1 protein deficiency exacerbates palmitate-induced steatosis and toxicity in hepatocytes.
        J Biol Chem. 2016; 291: 16610-16619
        • Hamlin A.N.
        • Chinnarasu S.
        • Ding Y.
        • Xian X.
        • Herz J.
        • Jaeschke A.
        • et al.
        Low-density lipoprotein receptor-related protein-1 dysfunction synergizes with dietary cholesterol to accelerate steatohepatitis progression.
        J Biol Chem. 2018; 293: 9674-9684
        • Kurahashi T.
        • Hamashima S.
        • Shirato T.
        • Lee J.
        • Homma T.
        • Kang E.S.
        • et al.
        An SOD1 deficiency enhances lipid droplet accumulation in the fasted mouse liver by aborting lipophagy.
        Biochem Biophys Res Commun. 2015; 467: 866-871
        • Lee J.
        • Homma T.
        • Kobayashi S.
        • Ishii N.
        • Fujii J.
        Unveiling systemic organ disorders associated with impaired lipid catabolism in fasted SOD1-deficient mice.
        Arch Biochem Biophys. 2018; 654: 163-171
        • Youle R.J.
        • Narendra D.P.
        Mechanisms of mitophagy.
        Nat Rev Mol Cell Biol. 2011; 12: 9-14
        • Tatsuta T.
        • Langer T.
        Quality control of mitochondria: protection against neurodegeneration and ageing.
        EMBO J. 2008; 27: 306-314
        • Saito T.
        • Sadoshima J.
        Molecular mechanisms of mitochondrial autophagy/mitophagy in the heart.
        Circ Res. 2015; 116: 1477-1490
        • Park J.
        • Lee S.B.
        • Lee S.
        • Kim Y.
        • Song S.
        • Kim S.
        • et al.
        Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin.
        Nature. 2006; 441: 1157-1161
        • Clark I.E.
        • Dodson M.W.
        • Jiang C.
        • Cao J.H.
        • Huh J.R.
        • Seol J.H.
        • et al.
        Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin.
        Nature. 2006; 441: 1162-1166
        • Lazarou M.
        • Jin S.M.
        • Kane L.A.
        • Youle R.J.
        Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin.
        Dev Cell. 2012; 22: 320-333
        • Okatsu K.
        • Oka T.
        • Iguchi M.
        • Imamura K.
        • Kosako H.
        • Tani N.
        • et al.
        PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria.
        Nat Commun. 2012; 3: 1016
        • Koyano F.
        • Okatsu K.
        • Kosako H.
        • Tamura Y.
        • Go E.
        • Kimura M.
        • et al.
        Ubiquitin is phosphorylated by PINK1 to activate parkin.
        Nature. 2014; 510: 162-166
        • Chen Y.
        • Dorn 2nd, G.W.
        PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria.
        Science. 2013; 340: 471-475
        • Bravo-San Pedro J.M.
        • Kroemer G.
        • Galluzzi L.
        Autophagy and mitophagy in cardiovascular disease.
        Circ Res. 2017; 120: 1812-1824
        • Kagan V.E.
        • Jiang J.
        • Huang Z.
        • Tyurina Y.Y.
        • Desbourdes C.
        • Cottet-Rousselle C.
        • et al.
        NDPK-D (NM23-H4)-mediated externalization of cardiolipin enables elimination of depolarized mitochondria by mitophagy.
        Cell Death Differ. 2016; 23: 1140-1151
        • Kim I.
        • Lemasters J.J.
        Mitochondrial degradation by autophagy (mitophagy) in GFP-LC3 transgenic hepatocytes during nutrient deprivation.
        Am J Physiol Cell Physiol. 2011; 300: C308-C317
        • Lemasters J.J.
        Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging.
        Rejuvenation Res. 2005; 8: 3-5
        • Kim I.
        • Lemasters J.J.
        Mitophagy selectively degrades individual damaged mitochondria after photoirradiation.
        Antioxid Redox Signal. 2011; 14: 1919-1928
        • Kim I.
        • Rodriguez-Enriquez S.
        • Lemasters J.J.
        Selective degradation of mitochondria by mitophagy.
        Arch Biochem Biophys. 2007; 462: 245-253
        • Narendra D.
        • Tanaka A.
        • Suen D.F.
        • Youle R.J.
        Parkin is recruited selectively to impaired mitochondria and promotes their autophagy.
        J Cell Biol. 2008; 183: 795-803
        • Kroemer G.
        • Galluzzi L.
        • Brenner C.
        Mitochondrial membrane permeabilization in cell death.
        Physiol Rev. 2007; 87: 99-163
        • Poole B.
        Biogenesis and turnover of rat liver peroxisomes.
        Ann N Y Acad Sci. 1969; 168: 229-243
        • Zhang J.
        • Tripathi D.N.
        • Jing J.
        • Alexander A.
        • Kim J.
        • Powell R.T.
        • et al.
        ATM functions at the peroxisome to induce pexophagy in response to ROS.
        Nat Cell Biol. 2015; 17: 1259-1269
        • Deosaran E.
        • Larsen K.B.
        • Hua R.
        • Sargent G.
        • Wang Y.
        • Kim S.
        • et al.
        NBR1 acts as an autophagy receptor for peroxisomes.
        J Cell Sci. 2013; 126: 939-952
        • Sargent G.
        • van Zutphen T.
        • Shatseva T.
        • Zhang L.
        • Di Giovanni V.
        • Bandsma R.
        • et al.
        PEX2 is the E3 ubiquitin ligase required for pexophagy during starvation.
        J Cell Biol. 2016; 214: 677-690
        • Eun S.Y.
        • Lee J.N.
        • Nam I.K.
        • Liu Z.Q.
        • So H.S.
        • Choe S.K.
        • et al.
        PEX5 regulates autophagy via the mTORC1-TFEB axis during starvation.
        Exp Mol Med. 2018; 50: 4
        • Walter K.M.
        • Schonenberger M.J.
        • Trotzmuller M.
        • Horn M.
        • Elsasser H.P.
        • Moser A.B.
        • et al.
        Hif-2alpha promotes degradation of mammalian peroxisomes by selective autophagy.
        Cell Metab. 2014; 20: 882-897
        • Iwata J.
        • Ezaki J.
        • Komatsu M.
        • Yokota S.
        • Ueno T.
        • Tanida I.
        • et al.
        Excess peroxisomes are degraded by autophagic machinery in mammals.
        J Biol Chem. 2006; 281: 4035-4041
        • Zientara-Rytter K.
        • Subramani S.
        Autophagic degradation of peroxisomes in mammals.
        Biochem Soc Trans. 2016; 44: 431-440
        • Godfrey R.
        • Quinlivan R.
        Skeletal muscle disorders of glycogenolysis and glycolysis.
        Nat Rev Neurol. 2016; 12: 393-402
        • Zhao H.
        • Tang M.
        • Liu M.
        • Chen L.
        Glycophagy: An emerging target in pathology.
        Clin Chim Acta. 2018; 484: 298-303
        • Jiang S.
        • Wells C.D.
        • Roach P.J.
        Starch-binding domain-containing protein 1 (Stbd1) and glycogen metabolism: Identification of the Atg8 family interacting motif (AIM) in Stbd1 required for interaction with GABARAPL1.
        Biochem Biophys Res Commun. 2011; 413: 420-425
        • Devos P.
        • Hers H.G.
        Random, presumably hydrolytic, and lysosomal glycogenolysis in the livers of rats treated with phlorizin and of newborn rats.
        Biochem J. 1980; 192: 177-181
        • David H.
        • Ellermann J.
        • Bimmler M.
        • Behrisch D.
        Ultrastructure of the liver after hypoxia in the postnatal period.
        Exp Pathol. 1991; 43: 97-110
        • Sun T.
        • Yi H.
        • Yang C.
        • Kishnani P.S.
        • Sun B.
        Starch binding domain-containing protein 1 plays a dominant role in glycogen transport to lysosomes in liver.
        J Biol Chem. 2016; 291: 16479-16484
        • Hazari Y.M.
        • Bashir A.
        • Habib M.
        • Bashir S.
        • Habib H.
        • Qasim M.A.
        • et al.
        Alpha-1-antitrypsin deficiency: genetic variations, clinical manifestations and therapeutic interventions.
        Mutat Res. 2017; 773: 14-25
        • Lindblad D.
        • Blomenkamp K.
        • Teckman J.
        Alpha-1-antitrypsin mutant Z protein content in individual hepatocytes correlates with cell death in a mouse model.
        Hepatology. 2007; 46: 1228-1235
        • Kroeger H.
        • Miranda E.
        • MacLeod I.
        • Perez J.
        • Crowther D.C.
        • Marciniak S.J.
        • et al.
        Endoplasmic reticulum-associated degradation (ERAD) and autophagy cooperate to degrade polymerogenic mutant serpins.
        J Biol Chem. 2009; 284: 22793-22802
        • Stoller J.K.
        • Aboussouan L.S.
        Alpha1-antitrypsin deficiency.
        Lancet. 2005; 365: 2225-2236
        • Kamimoto T.
        • Shoji S.
        • Hidvegi T.
        • Mizushima N.
        • Umebayashi K.
        • Perlmutter D.H.
        • et al.
        Intracellular inclusions containing mutant alpha1-antitrypsin Z are propagated in the absence of autophagic activity.
        J Biol Chem. 2006; 281: 4467-4476
        • Teckman J.H.
        • An J.K.
        • Blomenkamp K.
        • Schmidt B.
        • Perlmutter D.
        Mitochondrial autophagy and injury in the liver in alpha 1-antitrypsin deficiency.
        Am J Physiol Gastrointest Liver Physiol. 2004; 286: G851-G862
        • Teckman J.H.
        • Perlmutter D.H.
        Retention of mutant alpha(1)-antitrypsin Z in endoplasmic reticulum is associated with an autophagic response.
        Am J Physiol Gastrointest Liver Physiol. 2000; 279: G961-G974
        • Pastore N.
        • Blomenkamp K.
        • Annunziata F.
        • Piccolo P.
        • Mithbaokar P.
        • Maria Sepe R.
        • et al.
        Gene transfer of master autophagy regulator TFEB results in clearance of toxic protein and correction of hepatic disease in alpha-1-anti-trypsin deficiency.
        EMBO Mol Med. 2013; 5: 397-412
        • Hidvegi T.
        • Ewing M.
        • Hale P.
        • Dippold C.
        • Beckett C.
        • Kemp C.
        • et al.
        An autophagy-enhancing drug promotes degradation of mutant alpha1-antitrypsin Z and reduces hepatic fibrosis.
        Science. 2010; 329: 229-232
        • Czlonkowska A.
        • Litwin T.
        • Dusek P.
        • Ferenci P.
        • Lutsenko S.
        • Medici V.
        • et al.
        Wilson disease.
        Nat Rev Dis Primers. 2018; 4: 21
        • Polishchuk E.V.
        • Merolla A.
        • Lichtmannegger J.
        • Romano A.
        • Indrieri A.
        • Ilyechova E.Y.
        • et al.
        Activation of autophagy, observed in liver tissues from patients with Wilson disease and from ATP7B-deficient animals, protects hepatocytes from copper-induced apoptosis.
        Gastroenterology. 2019; 156 (1173–89 e5)
        • Zischka H.
        • Lichtmannegger J.
        • Schmitt S.
        • Jagemann N.
        • Schulz S.
        • Wartini D.
        • et al.
        Liver mitochondrial membrane crosslinking and destruction in a rat model of Wilson disease.
        J Clin Invest. 2011; 121: 1508-1518
        • Farah B.L.
        • Sinha R.A.
        • Wu Y.
        • Singh B.K.
        • Lim A.
        • Hirayama M.
        • et al.
        Hepatic mitochondrial dysfunction is a feature of Glycogen Storage Disease Type Ia (GSDIa).
        Sci Rep. 2017; 7: 44408
        • Farah B.L.
        • Landau D.J.
        • Sinha R.A.
        • Brooks E.D.
        • Wu Y.
        • Fung S.Y.S.
        • et al.
        Induction of autophagy improves hepatic lipid metabolism in glucose-6-phosphatase deficiency.
        J Hepatol. 2016; 64: 370-379
        • Cho J.H.
        • Kim G.Y.
        • Pan C.J.
        • Anduaga J.
        • Choi E.J.
        • Mansfield B.C.
        • et al.
        Downregulation of SIRT1 signaling underlies hepatic autophagy impairment in glycogen storage disease type Ia.
        PLoS Genet. 2017; 13e1006819
        • Lebeaupin C.
        • Vallee D.
        • Hazari Y.
        • Hetz C.
        • Chevet E.
        • Bailly-Maitre B.
        Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease.
        J Hepatol. 2018; 69: 927-947
        • Caldwell S.H.
        • Swerdlow R.H.
        • Khan E.M.
        • Iezzoni J.C.
        • Hespenheide E.E.
        • Parks J.K.
        • et al.
        Mitochondrial abnormalities in non-alcoholic steatohepatitis.
        J Hepatol. 1999; 31: 430-434
        • Yamada T.
        • Murata D.
        • Adachi Y.
        • Itoh K.
        • Kameoka S.
        • Igarashi A.
        • et al.
        Mitochondrial stasis reveals p62-mediated ubiquitination in Parkin-independent mitophagy and mitigates nonalcoholic fatty liver disease.
        Cell Metab. 2018; 28 (588-604 e5)
        • Hammoutene A.
        • Lasselin J.
        • Vion A.C.
        • Colnot N.
        • Paradis V.
        • Lotersztajn S.
        • et al.
        Defective autophagy in liver sinusoidal endothelial cells promotes non alcoholic steatohepatitis and fibrosis development.
        J Hepatol. 2018; 68: S29-S
        • Xiong X.
        • Tao R.
        • DePinho R.A.
        • Dong X.C.
        The autophagy-related gene 14 (Atg14) is regulated by forkhead box O transcription factors and circadian rhythms and plays a critical role in hepatic autophagy and lipid metabolism.
        J Biol Chem. 2012; 287: 39107-39114
        • Liu K.
        • Zhao E.
        • Ilyas G.
        • Lalazar G.
        • Lin Y.
        • Haseeb M.
        • et al.
        Impaired macrophage autophagy increases the immune response in obese mice by promoting proinflammatory macrophage polarization.
        Autophagy. 2015; 11: 271-284
        • Kim K.E.
        • Jung Y.
        • Min S.
        • Nam M.
        • Heo R.W.
        • Jeon B.T.
        • et al.
        Caloric restriction of db/db mice reverts hepatic steatosis and body weight with divergent hepatic metabolism.
        Sci Rep. 2016; 6: 30111
        • Goncalves I.O.
        • Passos E.
        • Diogo C.V.
        • Rocha-Rodrigues S.
        • Santos-Alves E.
        • Oliveira P.J.
        • et al.
        Exercise mitigates mitochondrial permeability transition pore and quality control mechanisms alterations in nonalcoholic steatohepatitis.
        Appl Physiol Nutr Metab. 2016; 41: 298-306
        • DeBosch B.J.
        • Heitmeier M.R.
        • Mayer A.L.
        • Higgins C.B.
        • Crowley J.R.
        • Kraft T.E.
        • et al.
        Trehalose inhibits solute carrier 2A (SLC2A) proteins to induce autophagy and prevent hepatic steatosis.
        Sci Signal. 2016; 9: ra21
        • Mardones P.
        • Rubinsztein D.C.
        • Hetz C.
        Mystery solved: Trehalose kickstarts autophagy by blocking glucose transport.
        Sci Signal. 2016; 9: fs2
        • Kim S.H.
        • Kim G.
        • Han D.H.
        • Lee M.
        • Kim I.
        • Kim B.
        • et al.
        Ezetimibe ameliorates steatohepatitis via AMP activated protein kinase-TFEB-mediated activation of autophagy and NLRP3 inflammasome inhibition.
        Autophagy. 2017; 13: 1767-1781
        • Lee D.H.
        • Han D.H.
        • Nam K.T.
        • Park J.S.
        • Kim S.H.
        • Lee M.
        • et al.
        Ezetimibe, an NPC1L1 inhibitor, is a potent Nrf2 activator that protects mice from diet-induced nonalcoholic steatohepatitis.
        Free Radical Biol Med. 2016; 99: 520-532
        • Pellicoro A.
        • Ramachandran P.
        • Iredale J.P.
        • Fallowfield J.A.
        Liver fibrosis and repair: immune regulation of wound healing in a solid organ.
        Nat Rev Immunol. 2014; 14: 181-194
        • Tsuchida T.
        • Friedman S.L.
        Mechanisms of hepatic stellate cell activation.
        Nat Rev Gastroenterol Hepatol. 2017; 14: 397-411
        • Mallat A.
        • Lotersztajn S.
        Cellular mechanisms of tissue fibrosis. 5. Novel insights into liver fibrosis.
        Am J Physiol Cell Physiol. 2013; 305: C789-C799
        • Thoen L.F.
        • Guimaraes E.L.
        • Dolle L.
        • Mannaerts I.
        • Najimi M.
        • Sokal E.
        • et al.
        A role for autophagy during hepatic stellate cell activation.
        J Hepatol. 2011; 55: 1353-1360
        • Hong Y.
        • Li S.
        • Wang J.
        • Li Y.
        In vitro inhibition of hepatic stellate cell activation by the autophagy-related lipid droplet protein ATG2A.
        Sci Rep. 2018; 8: 9232
        • Hernandez-Gea V.
        • Hilscher M.
        • Rozenfeld R.
        • Lim M.P.
        • Nieto N.
        • Werner S.
        • et al.
        Endoplasmic reticulum stress induces fibrogenic activity in hepatic stellate cells through autophagy.
        J Hepatol. 2013; 59: 98-104
        • Duran A.
        • Hernandez E.D.
        • Reina-Campos M.
        • Castilla E.A.
        • Subramaniam S.
        • Raghunandan S.
        • et al.
        p62/SQSTM1 by binding to vitamin D receptor inhibits hepatic stellate cell activity, fibrosis, and liver cancer.
        Cancer Cell. 2016; 30: 595-609
        • Ni H.M.
        • Woolbright B.L.
        • Williams J.
        • Copple B.
        • Cui W.
        • Luyendyk J.P.
        • et al.
        Nrf2 promotes the development of fibrosis and tumorigenesis in mice with defective hepatic autophagy.
        J Hepatol. 2014; 61: 617-625
        • Lodder J.
        • Denaes T.
        • Chobert M.N.
        • Wan J.
        • El-Benna J.
        • Pawlotsky J.M.
        • et al.
        Macrophage autophagy protects against liver fibrosis in mice.
        Autophagy. 2015; 11: 1280-1292
        • Ruart M.
        • Chavarria L.
        • Camprecios G.
        • Suarez-Herrera N.
        • Montironi C.
        • Guixe-Muntet S.
        • et al.
        Impaired endothelial autophagy promotes liver fibrosis by aggravating the oxidative stress response during acute liver injury.
        J Hepatol. 2019; 70: 458-469
        • Mridha A.R.
        • Wree A.
        • Robertson A.A.B.
        • Yeh M.M.
        • Johnson C.D.
        • Van Rooyen D.M.
        • et al.
        NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice.
        J Hepatol. 2017; 66: 1037-1046
        • Ilyas G.
        • Zhao E.
        • Liu K.
        • Lin Y.
        • Tesfa L.
        • Tanaka K.E.
        • et al.
        Macrophage autophagy limits acute toxic liver injury in mice through down regulation of interleukin-1beta.
        J Hepatol. 2016; 64: 118-127
        • Llovet J.M.
        • Zucman-Rossi J.
        • Pikarsky E.
        • Sangro B.
        • Schwartz M.
        • Sherman M.
        • et al.
        Hepatocellular carcinoma.
        Nat Rev Dis Primers. 2016; 2: 16018
        • Rybstein M.D.
        • Bravo-San Pedro J.M.
        • Kroemer G.
        • Galluzzi L.
        The autophagic network and cancer.
        Nat Cell Biol. 2018; 20: 243-251
        • Takamura A.
        • Komatsu M.
        • Hara T.
        • Sakamoto A.
        • Kishi C.
        • Waguri S.
        • et al.
        Autophagy-deficient mice develop multiple liver tumors.
        Genes Dev. 2011; 25: 795-800
        • Lee Y.A.
        • Noon L.A.
        • Akat K.M.
        • Ybanez M.D.
        • Lee T.F.
        • Berres M.L.
        • et al.
        Autophagy is a gatekeeper of hepatic differentiation and carcinogenesis by controlling the degradation of Yap.
        Nat Commun. 2018; 9: 4962
        • Perra A.
        • Kowalik M.A.
        • Ghiso E.
        • Ledda-Columbano G.M.
        • Di Tommaso L.
        • Angioni M.M.
        • et al.
        YAP activation is an early event and a potential therapeutic target in liver cancer development.
        J Hepatol. 2014; 61: 1088-1096
        • Umemura A.
        • He F.
        • Taniguchi K.
        • Nakagawa H.
        • Yamachika S.
        • Font-Burgada J.
        • et al.
        p62, upregulated during preneoplasia, induces hepatocellular carcinogenesis by maintaining survival of stressed HCC-initiating cells.
        Cancer Cell. 2016; 29: 935-948
        • Moscat J.
        • Karin M.
        • Diaz-Meco M.T.
        p62 in cancer: signaling adaptor beyond autophagy.
        Cell. 2016; 167: 606-609
        • Ichimura Y.
        • Waguri S.
        • Sou Y.S.
        • Kageyama S.
        • Hasegawa J.
        • Ishimura R.
        • et al.
        Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy.
        Mol Cell. 2013; 51: 618-631
        • Inami Y.
        • Waguri S.
        • Sakamoto A.
        • Kouno T.
        • Nakada K.
        • Hino O.
        • et al.
        Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells.
        J Cell Biol. 2011; 193: 275-284
        • Li J.
        • Yang B.
        • Zhou Q.
        • Wu Y.
        • Shang D.
        • Guo Y.
        • et al.
        Autophagy promotes hepatocellular carcinoma cell invasion through activation of epithelial-mesenchymal transition.
        Carcinogenesis. 2013; 34: 1343-1351
        • Hu T.
        • Li P.
        • Luo Z.
        • Chen X.
        • Zhang J.
        • Wang C.
        • et al.
        Chloroquine inhibits hepatocellular carcinoma cell growth in vitro and in vivo.
        Oncol Rep. 2016; 35: 43-49
        • Wang Y.
        • Zhao H.
        • Wang D.
        • Hao M.
        • Kong C.
        • Zhao X.
        • et al.
        Inhibition of autophagy promoted apoptosis and suppressed growth of hepatocellular carcinoma upon photothermal exposure.
        J Biomed Nanotechnol. 2019; 15: 813-821
        • Shimizu S.
        • Takehara T.
        • Hikita H.
        • Kodama T.
        • Tsunematsu H.
        • Miyagi T.
        • et al.
        Inhibition of autophagy potentiates the antitumor effect of the multikinase inhibitor sorafenib in hepatocellular carcinoma.
        Int J Cancer. 2012; 131: 548-557
        • Clarke A.J.
        • Simon A.K.
        Autophagy in the renewal, differentiation and homeostasis of immune cells.
        Nat Rev Immunol. 2019; 19: 170-183
        • Galluzzi L.
        • Chan T.A.
        • Kroemer G.
        • Wolchok J.D.
        • Lopez-Soto A.
        The hallmarks of successful anticancer immunotherapy.
        Sci Transl Med. 2018; 10
        • Soria L.R.
        • Brunetti-Pierri N.
        Targeting autophagy for therapy of hyperammonemia.
        Autophagy. 2018; 14: 1273-1275
        • Eng C.H.
        • Yu K.
        • Lucas J.
        • White E.
        • Abraham R.T.
        Ammonia derived from glutaminolysis is a diffusible regulator of autophagy.
        Sci Signal. 2010; 3: ra31
        • Cheong H.
        • Lindsten T.
        • Wu J.
        • Lu C.
        • Thompson C.B.
        Ammonia-induced autophagy is independent of ULK1/ULK2 kinases.
        Proc Natl Acad Sci U S A. 2011; 108: 11121-11126
        • Polletta L.
        • Vernucci E.
        • Carnevale I.
        • Arcangeli T.
        • Rotili D.
        • Palmerio S.
        • et al.
        SIRT5 regulation of ammonia-induced autophagy and mitophagy.
        Autophagy. 2015; 11: 253-270
        • Soria L.R.
        • Allegri G.
        • Melck D.
        • Pastore N.
        • Annunziata P.
        • Paris D.
        • et al.
        Enhancement of hepatic autophagy increases ureagenesis and protects against hyperammonemia.
        Proc Natl Acad Sci U S A. 2018; 115: 391-396
        • Yuen M.F.
        • Chen D.S.
        • Dusheiko G.M.
        • Janssen H.L.A.
        • Lau D.T.Y.
        • Locarnini S.A.
        • et al.
        Hepatitis B virus infection.
        Nat Rev Dis Primers. 2018; 4: 18035
        • Thrift A.P.
        • El-Serag H.B.
        • Kanwal F.
        Global epidemiology and burden of HCV infection and HCV-related disease.
        Nat Rev Gastroenterol Hepatol. 2017; 14: 122-132
        • Lazar C.
        • Uta M.
        • Branza-Nichita N.
        Modulation of the unfolded protein response by the human hepatitis B virus.
        Front Microbiol. 2014; 5: 433
        • Ait-Goughoulte M.
        • Kanda T.
        • Meyer K.
        • Ryerse J.S.
        • Ray R.B.
        • Ray R.
        Hepatitis C virus genotype 1a growth and induction of autophagy.
        J Virol. 2008; 82: 2241-2249
        • Rautou P.E.
        • Cazals-Hatem D.
        • Feldmann G.
        • Mansouri A.
        • Grodet A.
        • Barge S.
        • et al.
        Changes in autophagic response in patients with chronic hepatitis C virus infection.
        Am J Pathol. 2011; 178: 2708-2715
        • Tang H.
        • Da L.
        • Mao Y.
        • Li Y.
        • Li D.
        • Xu Z.
        • et al.
        Hepatitis B virus X protein sensitizes cells to starvation-induced autophagy via up-regulation of beclin 1 expression.
        Hepatology. 2009; 49: 60-71
        • Aweya J.J.
        • Mak T.M.
        • Lim S.G.
        • Tan Y.J.
        The p7 protein of the hepatitis C virus induces cell death differently from the influenza A virus viroporin M2.
        Virus Res. 2013; 172: 24-34
        • Rios-Ocampo W.A.
        • Daemen T.
        • Buist-Homan M.
        • Faber K.N.
        • Navas M.C.
        • Moshage H.
        Hepatitis C virus core or NS3/4A protein expression preconditions hepatocytes against oxidative stress and endoplasmic reticulum stress.
        Redox Rep. 2019; 24: 17-26
        • Su W.C.
        • Chao T.C.
        • Huang Y.L.
        • Weng S.C.
        • Jeng K.S.
        • Lai M.M.
        Rab5 and class III phosphoinositide 3-kinase Vps34 are involved in hepatitis C virus NS4B-induced autophagy.
        J Virol. 2011; 85: 10561-10571
        • Doring T.
        • Zeyen L.
        • Bartusch C.
        • Prange R.
        Hepatitis B virus subverts the autophagy elongation complex Atg5-12/16L1 and does not require Atg8/LC3 lipidation for viral maturation.
        J Virol. 2018; 92: e01513-e1517
        • Sir D.
        • Tian Y.
        • Chen W.L.
        • Ann D.K.
        • Yen T.S.
        • Ou J.H.
        The early autophagic pathway is activated by hepatitis B virus and required for viral DNA replication.
        Proc Natl Acad Sci U S A. 2010; 107: 4383-4388
        • Tanida I.
        • Fukasawa M.
        • Ueno T.
        • Kominami E.
        • Wakita T.
        • Hanada K.
        Knockdown of autophagy-related gene decreases the production of infectious hepatitis C virus particles.
        Autophagy. 2009; 5: 937-945

      CHORUS Manuscript

      View Open Manuscript