Advertisement

A defect in endothelial autophagy occurs in patients with non-alcoholic steatohepatitis and promotes inflammation and fibrosis

Published:November 11, 2019DOI:https://doi.org/10.1016/j.jhep.2019.10.028

      Highlights

      • Autophagy is defective in liver endothelial cells from patients with non-alcoholic steatohepatitis.
      • This defect is mirrored by low levels of inflammatory mediators in the portal blood of patients with metabolic syndrome.
      • Deficient autophagy induces inflammation, features of endothelial-to-mesenchymal transition and apoptosis.
      • Deficiency in endothelial autophagy promotes liver inflammation, liver cell apoptosis and liver perisinusoidal fibrosis.

      Background & Aims

      Previous studies demonstrated that autophagy is protective in hepatocytes and macrophages, but detrimental in hepatic stellate cells in chronic liver diseases. The role of autophagy in liver sinusoidal endothelial cells (LSECs) in non-alcoholic steatohepatitis (NASH) is unknown. Our aim was to analyze the potential implication of autophagy in LSECs in NASH and liver fibrosis.

      Methods

      We analyzed autophagy in LSECs from patients using transmission electron microscopy. We determined the consequences of a deficiency in autophagy: (a) on LSEC phenotype, using primary LSECs and an LSEC line; (b) on early stages of NASH and on advanced stages of liver fibrosis, using transgenic mice deficient in autophagy specifically in endothelial cells and fed a high-fat diet or chronically treated with carbon tetrachloride, respectively.

      Results

      Patients with NASH had half as many LSECs containing autophagic vacuoles as patients without liver histological abnormalities, or with simple steatosis. LSECs from mice deficient in endothelial autophagy displayed an upregulation of genes implicated in inflammatory pathways. In the LSEC line, deficiency in autophagy enhanced inflammation (Ccl2, Ccl5, Il6 and VCAM-1 expression), features of endothelial-to-mesenchymal transition (α-Sma, Tgfb1, Col1a2 expression) and apoptosis (cleaved caspase-3). In mice fed a high-fat diet, deficiency in endothelial autophagy induced liver expression of inflammatory markers (Ccl2, Ccl5, Cd68, Vcam-1), liver cell apoptosis (cleaved caspase-3) and perisinusoidal fibrosis. Mice deficient in endothelial autophagy treated with carbon tetrachloride also developed more perisinusoidal fibrosis.

      Conclusions

      A defect in autophagy in LSECs occurs in patients with NASH. Deficiency in endothelial autophagy promotes the development of liver inflammation, features of endothelial-to-mesenchymal transition, apoptosis and liver fibrosis in the early stages of NASH, but also favors more advanced stages of liver fibrosis.

      Lay summary

      Autophagy is a physiological process controlling endothelial homeostasis in vascular beds outside the liver. This study demonstrates that autophagy is defective in the liver endothelial cells of patients with non-alcoholic steatohepatitis. This defect promotes liver inflammation and fibrosis at early stages of non-alcoholic steatohepatitis, but also at advanced stages of chronic liver disease.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment
      Subscribe to Journal of Hepatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Estes C.
        • Razavi H.
        • Loomba R.
        • Younossi Z.
        • Sanyal A.J.
        Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease.
        Hepatology. 2018; 67: 123-133
        • Friedman S.L.
        • Neuschwander-Tetri B.A.
        • Rinella M.
        • Sanyal A.J.
        Mechanisms of NAFLD development and therapeutic strategies.
        Nat Med. 2018; 24: 908-922
        • Wong R.J.
        • Aguilar M.
        • Cheung R.
        • Perumpail R.B.
        • Harrison S.A.
        • Younossi Z.M.
        • et al.
        Nonalcoholic steatohepatitis is the second leading etiology of liver disease among adults awaiting liver transplantation in the United States.
        Gastroenterology. 2015; 148: 547-555
        • Schuppan D.
        • Schattenberg J.M.
        Non-alcoholic steatohepatitis: pathogenesis and novel therapeutic approaches.
        J Gastroenterol Hepatol. 2013; 28: 68-76
        • Hammoutene A.
        • Rautou P.-E.
        Role of liver sinusoidal endothelial cells in nonalcoholic fatty liver disease.
        J Hepatol. 2019; 70: 1278-1291
        • Marra F.
        • Svegliati-Baroni G.
        Lipotoxicity and the gut-liver axis in NASH pathogenesis.
        J Hepatol. 2018; 68: 280-295
        • Poisson J.
        • Lemoinne S.
        • Boulanger C.
        • Durand F.
        • Moreau R.
        • Valla D.
        • et al.
        Liver sinusoidal endothelial cells: physiology and role in liver diseases.
        J Hepatol. 2017; 66: 212-227
        • Wu J.
        • Meng Z.
        • Jiang M.
        • Zhang E.
        • Trippler M.
        • Broering R.
        • et al.
        Toll-like receptor-induced innate immune responses in non-parenchymal liver cells are cell type-specific.
        Immunology. 2010; 129: 363-374
        • Coulon S.
        • Legry V.
        • Heindryckx F.
        • Van Steenkiste C.
        • Casteleyn C.
        • Olievier K.
        • et al.
        Role of vascular endothelial growth factor in the pathophysiology of nonalcoholic steatohepatitis in two rodent models.
        Hepatology. 2013; 57: 1793-1805
        • McCuskey R.S.
        • Ito Y.
        • Robertson G.R.
        • McCuskey M.K.
        • Perry M.
        • Farrell G.C.
        Hepatic microvascular dysfunction during evolution of dietary steatohepatitis in mice.
        Hepatology. 2004; 40: 386-393
        • Francque S.
        • Laleman W.
        • Verbeke L.
        • Van Steenkiste C.
        • Casteleyn C.
        • Kwanten W.
        • et al.
        Increased intrahepatic resistance in severe steatosis: endothelial dysfunction, vasoconstrictor overproduction and altered microvascular architecture.
        Lab Invest. 2012; 92: 1428-1439
        • Gonzalez-Paredes F.J.
        • Hernández Mesa G.
        • Morales Arraez D.
        • Marcelino Reyes R.
        • Abrante B.
        • Diaz-Flores F.
        • et al.
        Contribution of cyclooxygenase end products and oxidative stress to intrahepatic endothelial dysfunction in early non-alcoholic fatty liver disease.
        PLoS One. 2016; 11: e0156650
        • Miyao M.
        • Kotani H.
        • Ishida T.
        • Kawai C.
        • Manabe S.
        • Abiru H.
        • et al.
        Pivotal role of liver sinusoidal endothelial cells in NAFLD/NASH progression.
        Lab Invest. 2015; 95: 1130-1144
        • Pasarín M.
        • La Mura V.
        • Gracia-Sancho J.
        • García-Calderó H.
        • Rodríguez-Vilarrupla A.
        • García-Pagán J.C.
        • et al.
        Sinusoidal endothelial dysfunction precedes inflammation and fibrosis in a model of NAFLD.
        PLoS One. 2012; 7: e32785
        • DeLeve L.D.
        • Wang X.
        • Kanel G.C.
        • Atkinson R.D.
        • McCuskey R.S.
        Prevention of hepatic fibrosis in a murine model of metabolic syndrome with nonalcoholic steatohepatitis.
        Am J Pathol. 2008; 173: 993-1001
        • DeLeve L.D.
        Liver sinusoidal endothelial cells in hepatic fibrosis.
        Hepatology. 2015; 61: 1740-1746
        • Kitade M.
        • Yoshiji H.
        • Kojima H.
        • Ikenaka Y.
        • Noguchi R.
        • Kaji K.
        • et al.
        Leptin-mediated neovascularization is a prerequisite for progression of nonalcoholic steatohepatitis in rats.
        Hepatology. 2006; 44: 983-991
        • Kitade M.
        • Yoshiji H.
        • Noguchi R.
        • Ikenaka Y.
        • Kaji K.
        • Shirai Y.
        • et al.
        Crosstalk between angiogenesis, cytokeratin-18, and insulin resistance in the progression of non-alcoholic steatohepatitis.
        World J Gastroenterol. 2009; 15: 5193-5199
        • Tarantino G.
        • Conca P.
        • Pasanisi F.
        • Ariello M.
        • Mastrolia M.
        • Arena A.
        • et al.
        Could inflammatory markers help diagnose nonalcoholic steatohepatitis?.
        Eur J Gastroenterol Hepatol. 2009; 21: 504-511
        • Choi A.M.K.
        • Ryter S.W.
        • Levine B.
        Autophagy in human health and disease.
        N Engl J Med. 2013; 368: 651-662
        • Allaire M.
        • Rautou P.-E.
        • Codogno P.
        • Lotersztajn S.
        Autophagy in liver diseases: time for translation?.
        J Hepatol. 2019; 70: 985-998
        • Gual P.
        • Gilgenkrantz H.
        • Lotersztajn S.
        Autophagy in chronic liver diseases: the two faces of Janus.
        Am J Physiol Cell Physiol. 2017; 312: C263-C273
        • Madrigal-Matute J.
        • Cuervo A.M.
        Regulation of liver metabolism by autophagy.
        Gastroenterology. 2016; 150: 328-339
        • Gracia-Sancho J.
        • Guixé-Muntet S.
        The many-faced role of autophagy in liver diseases.
        J Hepatol. 2018; 68: 593-594
        • Lodder J.
        • Denaës T.
        • Chobert M.-N.
        • Wan J.
        • El-Benna J.
        • Pawlotsky J.-M.
        • et al.
        Macrophage autophagy protects against liver fibrosis in mice.
        Autophagy. 2015; 11: 1280-1292
        • Hernández-Gea V.
        • Ghiassi-Nejad Z.
        • Rozenfeld R.
        • Gordon R.
        • Fiel M.I.
        • Yue Z.
        • et al.
        Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues.
        Gastroenterology. 2012; 142: 938-946
        • Ruart M.
        • Chavarria L.
        • Campreciós G.
        • Suárez-Herrera N.
        • Montironi C.
        • Guixé-Muntet S.
        • et al.
        Impaired endothelial autophagy promotes liver fibrosis by aggravating the oxidative stress response during acute liver injury.
        J Hepatol. 2019; 70: 458-469
        • Guixé-Muntet S.
        • de Mesquita F.C.
        • Vila S.
        • Hernández-Gea V.
        • Peralta C.
        • García-Pagán J.C.
        • et al.
        Cross-talk between autophagy and KLF2 determines endothelial cell phenotype and microvascular function in acute liver injury.
        J Hepatol. 2017; 66: 86-94
        • Bedossa P.
        • Poitou C.
        • Veyrie N.
        • Bouillot J.-L.
        • Basdevant A.
        • Paradis V.
        • et al.
        Histopathological algorithm and scoring system for evaluation of liver lesions in morbidly obese patients.
        Hepatology. 2012; 56: 1751-1759
        • Oberlin E.
        • Fleury M.
        • Clay D.
        • Petit-Cocault L.
        • Candelier J.-J.
        • Mennesson B.
        • et al.
        VE-cadherin expression allows identification of a new class of hematopoietic stem cells within human embryonic liver.
        Blood. 2010; 116: 4444-4455
        • Hara T.
        • Nakamura K.
        • Matsui M.
        • Yamamoto A.
        • Nakahara Y.
        • Suzuki-Migishima R.
        • et al.
        Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice.
        Nature. 2006; 441: 885-889
        • Oberlin E.
        • El Hafny B.
        • Petit-Cocault L.
        • Souyri M.
        Definitive human and mouse hematopoiesis originates from the embryonic endothelium: a new class of HSCs based on VE-cadherin expression.
        Int J Dev Biol. 2010; 54: 1165-1173
        • Desroches-Castan A.
        • Tillet E.
        • Ricard N.
        • Ouarné M.
        • Mallet C.
        • Feige J.-J.
        • et al.
        Differential consequences of Bmp9 deletion on sinusoidal endothelial cell differentiation and liver fibrosis in 129/Ola and C57BL/6 mice.
        Cells. 2019; 8: E1079
        • Huebert R.C.
        • Jagavelu K.
        • Liebl A.F.
        • Huang B.Q.
        • Splinter P.L.
        • LaRusso N.F.
        • et al.
        Immortalized liver endothelial cells: a cell culture model for studies of motility and angiogenesis.
        Lab Invest. 2010; 90: 1770-1781
        • Vion A.-C.
        • Kheloufi M.
        • Hammoutene A.
        • Poisson J.
        • Lasselin J.
        • Devue C.
        • et al.
        Autophagy is required for endothelial cell alignment and atheroprotection under physiological blood flow.
        Proc Natl Acad Sci U S A. 2017; 114: E8675-E8684
        • Shah V.
        • Haddad F.G.
        • Garcia-Cardena G.
        • Frangos J.A.
        • Mennone A.
        • Groszmann R.J.
        • et al.
        Liver sinusoidal endothelial cells are responsible for nitric oxide modulation of resistance in the hepatic sinusoids.
        J Clin Invest. 1997; 100: 2923-2930
        • Peiris A.N.
        • Mueller R.A.
        • Smith G.A.
        • Struve M.F.
        • Kissebah A.H.
        Splanchnic insulin metabolism in obesity. Influence of body fat distribution.
        J Clin Invest. 1986; 78: 1648-1657
        • Fontana L.
        • Eagon J.C.
        • Trujillo M.E.
        • Scherer P.E.
        • Klein S.
        Visceral fat adipokine secretion is associated with systemic inflammation in obese humans.
        Diabetes. 2007; 56: 1010-1013
        • Magkos F.
        • Fabbrini E.
        • Patterson B.W.
        • Eagon J.C.
        • Klein S.
        Portal vein and systemic adiponectin concentrations are closely linked with hepatic glucose and lipoprotein kinetics in extremely obese subjects.
        Metabolism. 2011; 60: 1641-1648
        • Liu R.H.
        • Kurose T.
        • Matsukura S.
        Oral nicotine administration decreases tumor necrosis factor-alpha expression in fat tissues in obese rats.
        Metabolism. 2001; 50: 79-85
        • Mizushima N.
        • Yoshimori T.
        How to interpret LC3 immunoblotting.
        Autophagy. 2007; 3: 542-545
        • Gatica D.
        • Chiong M.
        • Lavandero S.
        • Klionsky D.J.
        Molecular mechanisms of autophagy in the cardiovascular system.
        Circ Res. 2015; 116: 456-467
        • Ogawa Y.
        • Imajo K.
        • Honda Y.
        • Kessoku T.
        • Tomeno W.
        • Kato S.
        • et al.
        Palmitate-induced lipotoxicity is crucial for the pathogenesis of nonalcoholic fatty liver disease in cooperation with gut-derived endotoxin.
        Sci Rep. 2018; 8: 11365
        • Miyachi Y.
        • Tsuchiya K.
        • Komiya C.
        • Shiba K.
        • Shimazu N.
        • Yamaguchi S.
        • et al.
        Roles for cell-cell adhesion and contact in obesity-induced hepatic myeloid cell accumulation and glucose intolerance.
        Cell Rep. 2017; 18: 2766-2779
        • Santhekadur P.K.
        • Kumar D.P.
        • Sanyal A.J.
        Preclinical models of non-alcoholic fatty liver disease.
        J Hepatol. 2018; 68: 230-237
        • Loos B.
        • du Toit A.
        • Hofmeyr J.-H.S.
        Defining and measuring autophagosome flux—concept and reality.
        Autophagy. 2014; 10: 2087-2096
        • Jin M.
        • Klionsky D.J.
        Regulation of autophagy: modulation of the size and number of autophagosomes.
        FEBS Lett. 2014; 588: 2457-2463
        • Backues S.K.
        • Chen D.
        • Ruan J.
        • Xie Z.
        • Klionsky D.J.
        Estimating the size and number of autophagic bodies by electron microscopy.
        Autophagy. 2014; 10: 155-164
        • Zhao D.
        • Liu X.-M.
        • Yu Z.-Q.
        • Sun L.-L.
        • Xiong X.
        • Dong M.-Q.
        • et al.
        Atg20- and Atg24-family proteins promote organelle autophagy in fission yeast.
        J Cell Sci. 2016; 129: 4289-4304
        • Lefere S.
        • Van de Velde F.
        • Hoorens A.
        • Raevens S.
        • Van Campenhout S.
        • Vandierendonck A.
        • et al.
        Angiopoietin-2 promotes pathological angiogenesis and is a therapeutic target in murine nonalcoholic fatty liver disease.
        Hepatology. 2019; 69: 1087-1104
        • Milstone D.S.
        • Ilyama M.
        • Chen M.
        • O’Donnell P.
        • Davis V.M.
        • Plutzky J.
        • et al.
        Differential role of an NF-κB transcriptional response element in endothelial versus intimal cell VCAM-1 expression.
        Circ Res. 2015; 117: 166-177
        • Torisu K.
        • Singh K.K.
        • Torisu T.
        • Lovren F.
        • Liu J.
        • Pan Y.
        • et al.
        Intact endothelial autophagy is required to maintain vascular lipid homeostasis.
        Aging Cell. 2016; 15: 187-191
        • Lonardo A.
        • Nascimbeni F.
        • Ballestri S.
        • Fairweather D.
        • Win S.
        • Than T.A.
        • et al.
        Sex differences in nonalcoholic fatty liver disease: state of the art and identification of research gaps.
        Hepatology. 2019; 70: 1457-1469
        • Tsuchida T.
        • Friedman S.L.
        Mechanisms of hepatic stellate cell activation.
        Nat Rev Gastroenterol Hepatol. 2017; 14: 397-411
        • Li Y.
        • Lui K.O.
        • Zhou B.
        Reassessing endothelial-to-mesenchymal transition in cardiovascular diseases.
        Nat Rev Cardiol. 2018; 15: 445-456
        • Piera-Velazquez S.
        • Mendoza F.A.
        • Jimenez S.A.
        Endothelial to mesenchymal transition (EndoMT) in the pathogenesis of human fibrotic diseases.
        J Clin Med. 2016; 5
        • Singh K.K.
        • Lovren F.
        • Pan Y.
        • Quan A.
        • Ramadan A.
        • Matkar P.N.
        • et al.
        The essential autophagy gene ATG7 modulates organ fibrosis via regulation of endothelial-to-mesenchymal transition.
        J Biol Chem. 2015; 290: 2547-2559
        • Ribera J.
        • Pauta M.
        • Melgar-Lesmes P.
        • Córdoba B.
        • Bosch A.
        • Calvo M.
        • et al.
        A small population of liver endothelial cells undergoes endothelial-to-mesenchymal transition in response to chronic liver injury.
        Am J Physiol Gastrointest Liver Physiol. 2017; 313: G492-G504