Advertisement

Update on NAFLD genetics: From new variants to the clinic

  • Eric Trépo
    Correspondence
    Department of Gastroenterology, Hepatopancreatology and Digestive Oncology, C.U.B. Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium. Tel: +32-2-5556160.
    Affiliations
    Department of Gastroenterology, Hepatopancreatology and Digestive Oncology, C.U.B. Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium

    Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium
    Search for articles by this author
  • Luca Valenti
    Correspondence
    Corresponding authors. Addresses: Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Translational Medicine – Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy or Padiglione Marangoni, Ospedale Policlinico via F Sforza 35, 20122 Milano (MI), Italy; Tel.: +39-02-50320278
    Affiliations
    Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy

    Translational Medicine – Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
    Search for articles by this author
Published:March 04, 2020DOI:https://doi.org/10.1016/j.jhep.2020.02.020

      Abstract

      Non-alcoholic fatty liver disease (NAFLD) is the leading cause of liver diseases in high-income countries and the burden of NAFLD is increasing at an alarming rate. The risk of developing NAFLD and related complications is highly variable among individuals and is determined by environmental and genetic factors. Genome-wide association studies have uncovered robust and reproducible associations between variations in genes such as PNPLA3, TM6SF2, MBOAT7, GCKR, HSD17B13 and the natural history of NAFLD. These findings have provided compelling new insights into the biology of NAFLD and highlighted potentially attractive pharmaceutical targets. More recently the development of polygenic risk scores, which have shown promising results for the clinical risk prediction of other complex traits (such as cardiovascular disease and breast cancer), have provided new impetus for the clinical validation of genetic variants in NAFLD risk stratification. Herein, we review current knowledge on the genetic architecture of NAFLD, including gene-environment interactions, and discuss the implications for disease pathobiology, drug discovery and risk prediction. We particularly focus on the potential clinical translation of recent genetic advances, discussing methodological hurdles that must be overcome before these discoveries can be implemented in everyday practice.

      Keywords

      Linked Article

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Hepatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Younossi Z.
        • Anstee Q.M.
        • Marietti M.
        • Hardy T.
        • Henry L.
        • Eslam M.
        • et al.
        Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention.
        Nat Rev Gastroenterol Hepatol. 2018; 15: 11-20
        • Younossi Z.M.
        Long-term outcomes of nonalcoholic fatty liver disease: from nonalcoholic steatohepatitis to nonalcoholic steatofibrosis.
        Clin Gastroenterol Hepatol. 2017; 15: 1144-1147
        • Estes C.
        • Anstee Q.M.
        • Arias-Loste M.T.
        • Bantel H.
        • Bellentani S.
        • Caballeria J.
        • et al.
        Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016-2030.
        J Hepatol. 2018; 69: 896-904
        • Lohmueller K.E.
        • Pearce C.L.
        • Pike M.
        • Lander E.S.
        • Hirschhorn J.N.
        Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease.
        Nat Genet. 2003; 33: 177-182
        • Genomes Project C.
        • Auton A.
        • Brooks L.D.
        • Durbin R.M.
        • Garrison E.P.
        • Kang H.M.
        • et al.
        A global reference for human genetic variation.
        Nature. 2015; 526: 68-74
        • McCarthy S.
        • Das S.
        • Kretzschmar W.
        • Delaneau O.
        • Wood A.R.
        • Teumer A.
        • et al.
        A reference panel of 64,976 haplotypes for genotype imputation.
        Nat Genet. 2016; 48: 1279-1283
        • Taliento A.E.
        • Dallio M.
        • Federico A.
        • Prati D.
        • Valenti L.
        Novel insights into the genetic landscape of nonalcoholic fatty liver disease.
        Int J Environ Res Public Health. 2019; 16
        • Eslam M.
        • Sanyal A.J.
        • George J.
        Toward more accurate nomenclature for fatty liver diseases.
        Gastroenterology. 2019; 157: 590-593
        • Eslam M.
        • Valenti L.
        • Romeo S.
        Genetics and epigenetics of NAFLD and NASH: clinical impact.
        J Hepatol. 2018; 68: 268-279
        • Visscher P.M.
        • Hill W.G.
        • Wray N.R.
        Heritability in the genomics era–concepts and misconceptions.
        Nat Rev Genet. 2008; 9: 255-266
        • Shi H.
        • Kichaev G.
        • Pasaniuc B.
        Contrasting the genetic architecture of 30 complex traits from summary association data.
        Am J Hum Genet. 2016; 99: 139-153
        • Makkonen J.
        • Pietilainen K.H.
        • Rissanen A.
        • Kaprio J.
        • Yki-Jarvinen H.
        Genetic factors contribute to variation in serum alanine aminotransferase activity independent of obesity and alcohol: a study in monozygotic and dizygotic twins.
        J Hepatol. 2009; 50: 1035-1042
        • Loomba R.
        • Schork N.
        • Chen C.H.
        • Bettencourt R.
        • Bhatt A.
        • Ang B.
        • et al.
        Heritability of hepatic fibrosis and steatosis based on a prospective twin study.
        Gastroenterology. 2015; 149: 1784-1793
        • Dongiovanni P.
        • Stender S.
        • Pietrelli A.
        • Mancina R.M.
        • Cespiati A.
        • Petta S.
        • et al.
        Causal relationship of hepatic fat with liver damage and insulin resistance in nonalcoholic fatty liver.
        J Intern Med. 2018; 283: 356-370
        • Pelusi S.
        • Valenti L.
        Hepatic fat as clinical outcome and therapeutic target for nonalcoholic fatty liver disease.
        Liver Int. 2019; 39: 250-256
        • Guerrero R.
        • Vega G.L.
        • Grundy S.M.
        • Browning J.D.
        Ethnic differences in hepatic steatosis: an insulin resistance paradox?.
        Hepatology. 2009; 49: 791-801
        • Caussy C.
        • Soni M.
        • Cui J.
        • Bettencourt R.
        • Schork N.
        • Chen C.H.
        • et al.
        Nonalcoholic fatty liver disease with cirrhosis increases familial risk for advanced fibrosis.
        J Clin Invest. 2017; 127: 2697-2704
        • Long M.T.
        • Gurary E.B.
        • Massaro J.M.
        • Ma J.
        • Hoffmann U.
        • Chung R.T.
        • et al.
        Parental non-alcoholic fatty liver disease increases risk of non-alcoholic fatty liver disease in offspring.
        Liver Int. 2019; 39: 740-747
        • Romeo S.
        • Kozlitina J.
        • Xing C.
        • Pertsemlidis A.
        • Cox D.
        • Pennacchio L.A.
        • et al.
        Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease.
        Nat Genet. 2008; 40: 1461-1465
        • Speliotes E.K.
        • Yerges-Armstrong L.M.
        • Wu J.
        • Hernaez R.
        • Kim L.J.
        • Palmer C.D.
        • et al.
        Genome-wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits.
        PLoS Genet. 2011; 7: e1001324
        • Kozlitina J.
        • Smagris E.
        • Stender S.
        • Nordestgaard B.G.
        • Zhou H.H.
        • Tybjaerg-Hansen A.
        • et al.
        Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease.
        Nat Genet. 2014; 46: 352-356
        • Abul-Husn N.S.
        • Cheng X.
        • Li A.H.
        • Xin Y.
        • Schurmann C.
        • Stevis P.
        • et al.
        A protein-truncating HSD17B13 variant and protection from chronic liver disease.
        N Engl J Med. 2018; 378: 1096-1106
        • Dongiovanni P.
        • Donati B.
        • Fares R.
        • Lombardi R.
        • Mancina R.M.
        • Romeo S.
        • et al.
        PNPLA3 I148M polymorphism and progressive liver disease.
        World J Gastroenterol. 2013; 19: 6969-6978
        • Sookoian S.
        • Pirola C.J.
        Meta-analysis of the influence of I148M variant of patatin-like phospholipase domain containing 3 gene (PNPLA3) on the susceptibility and histological severity of nonalcoholic fatty liver disease.
        Hepatology. 2011; 53: 1883-1894
        • Valenti L.
        • Al-Serri A.
        • Daly A.K.
        • Galmozzi E.
        • Rametta R.
        • Dongiovanni P.
        • et al.
        Homozygosity for the PNPLA3 / adiponutrin I148M polymorphism influences liver fibrosis in patients with nonalcoholic fatty liver disease.
        Hepatology. 2010; 51: 1209-1217
        • Liu Y.L.
        • Patman G.L.
        • Leathart J.B.
        • Piguet A.C.
        • Burt A.D.
        • Dufour J.F.
        • et al.
        Carriage of the PNPLA3 rs738409 C >G polymorphism confers an increased risk of non-alcoholic fatty liver disease associated hepatocellular carcinoma.
        J Hepatol. 2013; 61: 75-81
        • Donati B.
        • Dongiovanni P.
        • Romeo S.
        • Meroni M.
        • McCain M.
        • Miele L.
        • et al.
        MBOAT7 rs641738 variant and hepatocellular carcinoma in non-cirrhotic individuals.
        Sci Rep. 2017; 7: 4492
        • Buch S.
        • Stickel F.
        • Trépo E.
        • Way M.
        • Herrmann A.
        • Nischalke H.D.
        • et al.
        A genome-wide association study confirms PNPLA3 and identifies TM6SF2 and MBOAT7 as risk loci for alcohol-related cirrhosis.
        Nat Genet. 2015; 47: 1443-1448
        • Valenti L.
        • Rumi M.
        • Galmozzi E.
        • Aghemo A.
        • Del Menico B.
        • De Nicola S.
        • et al.
        Patatin-Like phospholipase domain-containing 3 I148M polymorphism, steatosis, and liver damage in chronic hepatitis C.
        Hepatology. 2011; 53: 791-799
        • Vigano M.
        • Valenti L.
        • Lampertico P.
        • Facchetti F.
        • Motta B.M.
        • D'Ambrosio R.
        • et al.
        Patatin-like phospholipase domain-containing 3 I148M affects liver steatosis in patients with chronic hepatitis B.
        Hepatology. 2013; 58: 1245-1252
        • Valenti L.
        • Maggioni P.
        • Piperno A.
        • Rametta R.
        • Pelucchi S.
        • Mariani R.
        • et al.
        Patatin-like phospholipase domain containing-3 gene I148M polymorphism, steatosis, and liver damage in hereditary hemochromatosis.
        World J Gastroenterol. 2012; 18: 2813-2820
        • Stattermayer A.F.
        • Traussnigg S.
        • Dienes H.P.
        • Aigner E.
        • Stauber R.
        • Lackner K.
        • et al.
        Hepatic steatosis in Wilson disease - role of copper and PNPLA3 mutations.
        J Hepatol. 2015; 63: 156-163
        • Unalp-Arida A.
        • Ruhl C.E.
        PNPLA3 I148M and liver fat and fibrosis scores predict liver disease mortality in the United States population.
        Hepatology. 2019;
        • Grimaudo S.
        • Pipitone R.M.
        • Pennisi G.
        • Celsa C.
        • Camma C.
        • Di Marco V.
        • et al.
        Association between PNPLA3 rs738409 C>G variant and liver-related outcomes in patients with non-alcoholic fatty liver disease.
        Clin Gastroenterol Hepatol. 2020; 18: 935-944.e3
        • Dongiovanni P.
        • Petta S.
        • Maglio C.
        • Fracanzani A.L.
        • Pipitone R.
        • Mozzi E.
        • et al.
        Transmembrane 6 superfamily member 2 gene variant disentangles nonalcoholic steatohepatitis from cardiovascular disease.
        Hepatology. 2015; 61: 506-514
        • Liu Y.L.
        • Reeves H.L.
        • Burt A.D.
        • Tiniakos D.
        • McPherson S.
        • Leathart J.B.
        • et al.
        TM6SF2 rs58542926 influences hepatic fibrosis progression in patients with non-alcoholic fatty liver disease.
        Nat Commun. 2014; 5: 4309
        • Pelusi S.
        • Baselli G.
        • Pietrelli A.
        • Dongiovanni P.
        • Donati B.
        • McCain M.V.
        • et al.
        Rare pathogenic variants predispose to hepatocellular carcinoma in nonalcoholic fatty liver disease.
        Sci Rep. 2019; 9: 3682
        • Mancina R.M.
        • Dongiovanni P.
        • Petta S.
        • Pingitore P.
        • Meroni M.
        • Rametta R.
        • et al.
        The MBOAT7-TMC4 variant rs641738 increases risk of nonalcoholic fatty liver disease in individuals of European descent.
        Gastroenterology. 2016; 150: 1219-1230.e6
        • Chambers J.C.
        • Zhang W.
        • Sehmi J.
        • Li X.
        • Wass M.N.
        • Van der Harst P.
        • et al.
        Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma.
        Nat Genet. 2011; 43: 1131-1138
        • Beer N.L.
        • Tribble N.D.
        • McCulloch L.J.
        • Roos C.
        • Johnson P.R.
        • Orho-Melander M.
        • et al.
        The P446L variant in GCKR associated with fasting plasma glucose and triglyceride levels exerts its effect through increased glucokinase activity in liver.
        Hum Mol Genet. 2009; 18: 4081-4088
        • Dongiovanni P.
        • Meroni M.
        • Mancina R.M.
        • Baselli G.
        • Rametta R.
        • Pelusi S.
        • et al.
        Protein phosphatase 1 regulatory subunit 3B gene variation protects against hepatic fat accumulation and fibrosis in individuals at high risk of nonalcoholic fatty liver disease.
        Hepatol Commun. 2018; 2: 666-675
        • Stender S.
        • Smagris E.
        • Lauridsen B.K.
        • Kofoed K.F.
        • Nordestgaard B.G.
        • Tybjaerg-Hansen A.
        • et al.
        Relationship between genetic variation at PPP1R3B and liver glycogen and triglyceride levels.
        Hepatology. 2018; 67: 2182-2195
        • Petta S.
        • Valenti L.
        • Tuttolomondo A.
        • Dongiovanni P.
        • Pipitone R.M.
        • Cammá C.
        • et al.
        Interferon lambda 4 rs368234815 TT<δG variant is associated with liver damage in patients with nonalcoholic fatty liver disease.
        Hepatology. 2017; 66: 1885-1893
        • Eslam M.
        • Hashem A.M.
        • Leung R.
        • Romero-Gomez M.
        • Berg T.
        • Dore G.J.
        • et al.
        Interferon-lambda rs12979860 genotype and liver fibrosis in viral and non-viral chronic liver disease.
        Nat Commun. 2015; 6: 6422
        • Cai B.
        • Dongiovanni P.
        • Corey K.E.
        • Wang X.
        • Shmarakov I.O.
        • Zheng Z.
        • et al.
        Macrophage MerTK promotes liver fibrosis in nonalcoholic steatohepatitis.
        Cell Metab. 2020; 31: 406-421.e7
        • Dongiovanni P.
        • Meroni M.
        • Baselli G.A.
        • Mancina R.M.
        • Ruscica M.
        • Longo M.
        • et al.
        PCSK7 gene variation bridges atherogenic dyslipidemia with hepatic inflammation in NAFLD patients.
        J Lipid Res. 2019; 60: 1144-1153
        • Emdin C.A.
        • Haas M.
        • Khera A.V.
        • Aragam K.
        • Chaffin M.
        • Jiang L.
        • et al.
        A missense variant in Mitochondrial Amidoxime Reducing Component 1 gene and protection against liver disease.
        BioRxivorg. 2019; : 594523
        • Chen V.L.
        • Chen Y.
        • Du X.
        • Handelman S.K.
        • Speliotes E.K.
        Genetic variants that associate with liver cirrhosis have pleiotropic effects on human traits.
        Liver Int. 2020; 40: 405-415
        • Valenti L.
        • Fracanzani A.L.
        • Bugianesi E.
        • Dongiovanni P.
        • Galmozzi E.
        • Vanni E.
        • et al.
        HFE genotype, parenchymal iron accumulation, and liver fibrosis in patients with nonalcoholic fatty liver disease.
        Gastroenterology. 2010; 138: 905-912
        • Valenti L.
        • Canavesi E.
        • Galmozzi E.
        • Dongiovanni P.
        • Rametta R.
        • Maggioni P.
        • et al.
        Beta-globin mutations are associated with parenchymal siderosis and fibrosis in patients with non-alcoholic fatty liver disease.
        J Hepatol. 2010; 53: 927-933
        • Fares R.
        • Petta S.
        • Lombardi R.
        • Grimaudo S.
        • Dongiovanni P.
        • Pipitone R.
        • et al.
        The UCP2 -866 G>A promoter region polymorphism is associated with nonalcoholic steatohepatitis.
        Liver Int. 2015; 35: 1574-1580
        • Al-Serri A.
        • Anstee Q.M.
        • Valenti L.
        • Nobili V.
        • Leathart J.B.
        • Dongiovanni P.
        • et al.
        The SOD2 C47T polymorphism influences NAFLD fibrosis severity: evidence from case-control and intra-familial allele association studies.
        J Hepatol. 2012; 56: 448-454
        • Yang J.
        • Trépo E.
        • Nahon P.
        • Cao Q.
        • Moreno C.
        • Letouze E.
        • et al.
        A 17-beta-hydroxysteroid dehydrogenase 13 variant protects from hepatocellular carcinoma development in alcoholic liver disease.
        Hepatology. 2019; 70: 231-240
        • Stickel F.
        • Lutz P.
        • Buch S.
        • Nischalke H.D.
        • Silva I.
        • Rausch V.
        • et al.
        Genetic variation in HSD17B13 reduces the risk of developing cirrhosis and hepatocellular carcinoma in alcohol misusers.
        Hepatology. 2019;
        • Ma Y.
        • Belyaeva O.V.
        • Brown P.M.
        • Fujita K.
        • Valles K.
        • Karki S.
        • et al.
        17-beta hydroxysteroid dehydrogenase 13 is a hepatic retinol dehydrogenase associated with histological features of nonalcoholic fatty liver disease.
        Hepatology. 2019; 69: 1504-1519
        • Petta S.
        • Valenti L.
        • Marra F.
        • Grimaudo S.
        • Tripodo C.
        • Bugianesi E.
        • et al.
        MERTK rs4374383 polymorphism affects the severity of fibrosis in non-alcoholic fatty liver disease.
        J Hepatol. 2016; 64: 682-690
        • Valenti L.V.C.
        • Baselli G.A.
        Genetics of nonalcoholic fatty liver disease: a 2018 update.
        Curr Pharm Des. 2018; 24: 4566-4573
        • Huang Y.
        • He S.
        • Li J.Z.
        • Seo Y.K.
        • Osborne T.F.
        • Cohen J.C.
        • et al.
        A feed-forward loop amplifies nutritional regulation of PNPLA3.
        Proc Natl Acad Sci U S A. 2010; 107: 7892-7897
        • Pirazzi C.
        • Valenti L.
        • Motta B.M.
        • Pingitore P.
        • Hedfalk K.
        • Mancina R.M.
        • et al.
        PNPLA3 has retinyl-palmitate lipase activity in human hepatic stellate cells.
        Hum Mol Genet. 2014; 23: 4077-4085
        • BasuRay S.
        • Smagris E.
        • Cohen J.C.
        • Hobbs H.H.
        The PNPLA3 variant associated with fatty liver disease (I148M) accumulates on lipid droplets by evading ubiquitylation.
        Hepatology. 2017; 66: 1111-1124
        • Mitsche M.A.
        • Hobbs H.H.
        • Cohen J.C.
        Patatin-like phospholipase domain-containing protein 3 promotes transfer of essential fatty acids from triglycerides to phospholipids in hepatic lipid droplets.
        J Biol Chem. 2018; 293: 6958-6968
        • Donati B.
        • Motta B.M.
        • Pingitore P.
        • Meroni M.
        • Pietrelli A.
        • Alisi A.
        • et al.
        The rs2294918 E434K variant modulates patatin-like phospholipase domain-containing 3 expression and liver damage.
        Hepatology. 2016; 63: 787-798
        • Luukkonen P.K.
        • Nick A.
        • Holtta-Vuori M.
        • Thiele C.
        • Isokuortti E.
        • Lallukka-Bruck S.
        • et al.
        Human PNPLA3-I148M variant increases hepatic retention of polyunsaturated fatty acids.
        JCI Insight. 2019; 4
        • Wang Y.
        • Kory N.
        • Cohen J.C.
        • Hobbs H.H.
        PNPLA3, CGI-58, and inhibition of hepatic triglyceride hydrolysis in mice.
        Hepatology. 2019; 69: 2427-2441
        • Yang A.
        • Mottillo E.P.
        • Mladenovic-Lucas L.
        • Zhou L.
        • Granneman J.G.
        Dynamic interactions of ABHD5 with PNPLA3 regulate triacylglycerol metabolism in brown adipocytes.
        Nat Metab. 2019; 1: 560-569
        • Negoita F.
        • Blomdahl J.
        • Wasserstrom S.
        • Winberg M.E.
        • Osmark P.
        • Larsson S.
        • et al.
        PNPLA3 variant M148 causes resistance to starvation-mediated lipid droplet autophagy in human hepatocytes.
        J Cell Biochem. 2019; 120: 343-356
        • BasuRay S.
        • Wang Y.
        • Smagris E.
        • Cohen J.C.
        • Hobbs H.H.
        Accumulation of PNPLA3 on lipid droplets is the basis of associated hepatic steatosis.
        Proc Natl Acad Sci U S A. 2019; 116: 9521-9526
        • Valenti L.
        • Rametta R.
        • Ruscica M.
        • Dongiovanni P.
        • Steffani L.
        • Motta B.M.
        • et al.
        The i148m polymorphism influences serum adiponectin in patients with fatty liver and healthy controls.
        BMC Gastroenterol. 2012; 12: 111
        • Youssefian L.
        • Vahidnezhad H.
        • Saeidian A.H.
        • Pajouhanfar S.
        • Sotoudeh S.
        • Mansouri P.
        • et al.
        Inherited non-alcoholic fatty liver disease and dyslipidemia due to monoallelic ABHD5 mutations.
        J Hepatol. 2019; 71: 366-370
        • Pericleous M.
        • Kelly C.
        • Wang T.
        • Livingstone C.
        • Ala A.
        Wolman's disease and cholesteryl ester storage disorder: the phenotypic spectrum of lysosomal acid lipase deficiency.
        Lancet Gastroenterol Hepatol. 2017; 2: 670-679
        • Luukkonen P.K.
        • Zhou Y.
        • Hyotylainen T.
        • Leivonen M.
        • Arola J.
        • Orho-Melander M.
        • et al.
        The MBOAT7 variant rs641738 alters hepatic phosphatidylinositols and increases severity of non-alcoholic fatty liver disease in humans.
        J Hepatol. 2016; 65: 1263-1265
        • Helsley R.N.
        • Venkateshwari V.
        • Brown A.L.
        • Gromovsky A.D.
        • Schugar R.C.
        • Ramachandiran I.
        • et al.
        Obesity-linked suppression of membrane-bound O-Acyltransferase 7 (MBOAT7) drives non-alcoholic fatty liver disease.
        Elife. 2019; 8
        • Meroni M.
        • Dongiovanni P.
        • Longo M.
        • Rametta R.
        • Badiali S.
        • Fargion S.
        • et al.
        Down-regulation of hepatic MBOAT7 by hyperinsulinemia favors steatosis development.
        J Hepatol. 2018; 68: S31
        • Luukkonen P.K.
        • Zhou Y.
        • Nidhina Haridas P.A.
        • Dwivedi O.P.
        • Hyotylainen T.
        • Ali A.
        • et al.
        Impaired hepatic lipid synthesis from polyunsaturated fatty acids in TM6SF2 E167K variant carriers with NAFLD.
        J Hepatol. 2017; 67: 128-136
        • Kim D.S.
        • Jackson A.U.
        • Li Y.K.
        • Stringham H.M.
        • Kuusisto J.
        • Kangas A.J.
        • et al.
        Novel association of TM6SF2 rs58542926 genotype with increased serum tyrosine levels and decreased apolipoprotein B-100 particles in Finns.
        J Lipid Res. 2017; 58: 1471-1481
        • Di Filippo M.
        • Moulin P.
        • Roy P.
        • Samson-Bouma M.E.
        • Collardeau-Frachon S.
        • Chebel-Dumont S.
        • et al.
        Homozygous MTTP and APOB mutations may lead to hepatic steatosis and fibrosis despite metabolic differences in congenital hypocholesterolemia.
        J Hepatol. 2014; 61: 891-902
        • Hamesch K.
        • Mandorfer M.
        • Pereira V.M.
        • Moeller L.S.
        • Pons M.
        • Dolman G.E.
        • et al.
        Liver fibrosis and metabolic alterations in adults with alpha-1-antitrypsin deficiency caused by the Pi∗ZZ mutation.
        Gastroenterology. 2019; 157: 705-719. e718
        • Mondul A.
        • Mancina R.M.
        • Merlo A.
        • Dongiovanni P.
        • Rametta R.
        • Montalcini T.
        • et al.
        PNPLA3 1148M variant influences circulating retinol in adults with nonalcoholic fatty liver disease or obesity.
        J Nutr. 2015; 145: 1687-1691
        • Pirazzi C.
        • Valenti L.
        • Motta B.M.
        • Pingitore P.
        • Hedfalk K.
        • Mancina R.M.
        • et al.
        PNPLA3 has retinyl-palmitate lipase activity in human hepatic stellate cells.
        Hum Mol Genet. 2014; 23: 4077-4085
        • Pingitore P.
        • Dongiovanni P.
        • Motta B.M.
        • Meroni M.
        • Lepore S.M.
        • Mancina R.M.
        • et al.
        PNPLA3 overexpression results in reduction of proteins predisposing to fibrosis.
        Hum Mol Genet. 2016; 25: 5212-5222
        • Bruschi F.V.
        • Claudel T.
        • Tardelli M.
        • Caligiuri A.
        • Stulnig T.M.
        • Marra F.
        • et al.
        The PNPLA3 I148M variant modulates the fibrogenic phenotype of human hepatic stellate cells.
        Hepatology. 2017; 65: 1875-1890
        • Prill S.
        • Caddeo A.
        • Baselli G.
        • Jamialahmadi O.
        • Dongiovanni P.
        • Rametta R.
        • et al.
        The TM6SF2 E167K genetic variant induces lipid biosynthesis and reduces apolipoprotein B secretion in human hepatic 3D spheroids.
        Sci Rep. 2019; 9: 11585
        • Buniello A.
        • MacArthur J.A.L.
        • Cerezo M.
        • Harris L.W.
        • Hayhurst J.
        • Malangone C.
        • et al.
        The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019.
        Nucleic Acids Res. 2019; 47: D1005-D1012
        • Gabriel S.B.
        • Schaffner S.F.
        • Nguyen H.
        • Moore J.M.
        • Roy J.
        • Blumenstiel B.
        • et al.
        The structure of haplotype blocks in the human genome.
        Science. 2002; 296: 2225-2229
        • Marouli E.
        • Graff M.
        • Medina-Gomez C.
        • Lo K.S.
        • Wood A.R.
        • Kjaer T.R.
        • et al.
        Rare and low-frequency coding variants alter human adult height.
        Nature. 2017; 542: 186-190
        • Tam V.
        • Patel N.
        • Turcotte M.
        • Bosse Y.
        • Pare G.
        • Meyre D.
        Benefits and limitations of genome-wide association studies.
        Nat Rev Genet. 2019; 20: 467-484
        • Wray N.R.
        • Wijmenga C.
        • Sullivan P.F.
        • Yang J.
        • Visscher P.M.
        Common disease is more complex than implied by the core gene omnigenic model.
        Cell. 2018; 173: 1573-1580
        • Sudlow C.
        • Gallacher J.
        • Allen N.
        • Beral V.
        • Burton P.
        • Danesh J.
        • et al.
        UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age.
        PLoS Med. 2015; 12: e1001779
        • Wojcik G.L.
        • Graff M.
        • Nishimura K.K.
        • Tao R.
        • Haessler J.
        • Gignoux C.R.
        • et al.
        Genetic analyses of diverse populations improves discovery for complex traits.
        Nature. 2019; 570: 514-518
        • Kozlitina J.
        • Stender S.
        • Hobbs H.H.
        • Cohen J.C.
        HSD17B13 and chronic liver disease in blacks and Hispanics.
        N Engl J Med. 2018; 379: 1876-1877
        • Willer C.J.
        • Sanna S.
        • Jackson A.U.
        • Scuteri A.
        • Bonnycastle L.L.
        • Clarke R.
        • et al.
        Newly identified loci that influence lipid concentrations and risk of coronary artery disease.
        Nat Genet. 2008; 40: 161-169
        • Clayton D.G.
        Prediction and interaction in complex disease genetics: experience in type 1 diabetes.
        PLoS Genet. 2009; 5: e1000540
        • Timpson N.J.
        • Greenwood C.M.T.
        • Soranzo N.
        • Lawson D.J.
        • Richards J.B.
        Genetic architecture: the shape of the genetic contribution to human traits and disease.
        Nat Rev Genet. 2018; 19: 110-124
        • Smagris E.
        • BasuRay S.
        • Li J.
        • Huang Y.
        • Lai K.M.
        • Gromada J.
        • et al.
        Pnpla3I148M knockin mice accumulate PNPLA3 on lipid droplets and develop hepatic steatosis.
        Hepatology. 2015; 61: 108-118
        • Stender S.
        • Kozlitina J.
        • Nordestgaard B.G.
        • Tybjaerg-Hansen A.
        • Hobbs H.H.
        • Cohen J.C.
        Adiposity amplifies the genetic risk of fatty liver disease conferred by multiple loci.
        Nat Genet. 2017; 49: 842-847
        • Barata L.
        • Feitosa M.F.
        • Bielak L.F.
        • Halligan B.
        • Baldridge A.S.
        • Guo X.
        • et al.
        Insulin resistance exacerbates genetic predisposition to nonalcoholic fatty liver disease in individuals without diabetes.
        Hepatol Commun. 2019; 3: 894-907
        • Little J.
        • Higgins J.P.
        • Ioannidis J.P.
        • Moher D.
        • Gagnon F.
        • von Elm E.
        • et al.
        STrengthening the REporting of Genetic Association studies (STREGA): an extension of the STROBE statement.
        Ann Intern Med. 2009; 150: 206-215
        • Jakobsdottir J.
        • Gorin M.B.
        • Conley Y.P.
        • Ferrell R.E.
        • Weeks D.E.
        Interpretation of genetic association studies: markers with replicated highly significant odds ratios may be poor classifiers.
        PLoS Genet. 2009; 5: e1000337
        • Kraft P.
        • Wacholder S.
        • Cornelis M.C.
        • Hu F.B.
        • Hayes R.B.
        • Thomas G.
        • et al.
        Beyond odds ratios–communicating disease risk based on genetic profiles.
        Nat Rev Genet. 2009; 10: 264-269
        • Torkamani A.
        • Wineinger N.E.
        • Topol E.J.
        The personal and clinical utility of polygenic risk scores.
        Nat Rev Genet. 2018; 19: 581-590
        • Marigorta U.M.
        • Rodriguez J.A.
        • Gibson G.
        • Navarro A.
        Replicability and prediction: lessons and challenges from GWAS.
        Trends Genet. 2018; 34: 504-517
        • Wray N.R.
        • Yang J.
        • Hayes B.J.
        • Price A.L.
        • Goddard M.E.
        • Visscher P.M.
        Pitfalls of predicting complex traits from SNPs.
        Nat Rev Genet. 2013; 14: 507-515
        • Trépo E.
        • Romeo S.
        • Zucman-Rossi J.
        • Nahon P.
        PNPLA3 gene in liver diseases.
        J Hepatol. 2016; 65: 399-412
        • European Association for the Study of the Liver
        • European association for the study of Diabetes
        • European association for the study of Obesity
        EASL-EASD-EASO clinical practice guidelines for the management of non-alcoholic fatty liver disease.
        J Hepatol. 2016; 64: 1388-1402
        • Anstee Q.M.
        • Liu Y.L.
        • Day C.P.
        • Reeves H.L.
        Reply to: HCC and liver disease risk in homozygous PNPLA3 p.I148M carriers approach monogenic inheritance.
        J Hepatol. 2015; 62: 982-983
        • Chatterjee N.
        • Shi J.
        • Garcia-Closas M.
        Developing and evaluating polygenic risk prediction models for stratified disease prevention.
        Nat Rev Genet. 2016; 17: 392-406
        • Khera A.V.
        • Chaffin M.
        • Aragam K.G.
        • Haas M.E.
        • Roselli C.
        • Choi S.H.
        • et al.
        Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations.
        Nat Genet. 2018; 50: 1219-1224
        • Maas P.
        • Barrdahl M.
        • Joshi A.D.
        • Auer P.L.
        • Gaudet M.M.
        • Milne R.L.
        • et al.
        Breast cancer risk from modifiable and nonmodifiable risk factors among white women in the United States.
        JAMA Oncol. 2016; 2: 1295-1302
        • Lee A.
        • Mavaddat N.
        • Wilcox A.N.
        • Cunningham A.P.
        • Carver T.
        • Hartley S.
        • et al.
        BOADICEA: a comprehensive breast cancer risk prediction model incorporating genetic and nongenetic risk factors.
        Genet Med. 2019; 21: 1708-1718
        • Sugrue L.P.
        • Desikan R.S.
        What Are polygenic scores and why are they important?.
        JAMA. 2019; 321: 1820-1821
        • Manolio T.A.
        • Bailey-Wilson J.E.
        • Collins F.S.
        Genes, environment and the value of prospective cohort studies.
        Nat Rev Genet. 2006; 7: 812-820
        • Hunter D.J.
        • Drazen J.M.
        Has the genome granted our wish yet?.
        N Engl J Med. 2019; 380: 2391-2393
        • Sevastianova K.
        • Kotronen A.
        • Gastaldelli A.
        • Perttila J.
        • Hakkarainen A.
        • Lundbom J.
        • et al.
        Genetic variation in PNPLA3 (adiponutrin) confers sensitivity to weight loss-induced decrease in liver fat in humans.
        Am J Clin Nutr. 2011; 94: 104-111
        • Margherita Mancina R.
        • Matikainen N.
        • Maglio C.
        • Soderlund S.
        • Lundbom N.
        • Hakkarainen A.
        • et al.
        Paradoxical dissociation between hepatic fat content and de novo lipogenesis due to PNPLA3 sequence variant.
        J Clin Endocrinol Metab. 2015; (jc20144464)
        • Nobili V.
        • Bedogni G.
        • Donati B.
        • Alisi A.
        • Valenti L.
        The I148M variant of PNPLA3 reduces the response to docosahexaenoic acid in children with non-alcoholic fatty liver disease.
        J Med Food. 2013; 16: 957-960
        • Scorletti E.
        • West A.L.
        • Bhatia L.
        • Hoile S.P.
        • McCormick K.G.
        • Burdge G.C.
        • et al.
        Treating liver fat and serum triglyceride levels in NAFLD, effects of PNPLA3 and TM6SF2 genotypes: results from the WELCOME trial.
        J Hepatol. 2015; 63: 1476-1483
        • Dongiovanni P.
        • Petta S.
        • Mannisto V.
        • Margherita Mancina R.
        • Pipitone R.
        • Karja V.
        • et al.
        Statin use and nonalcoholic steatohepatitis in at risk individuals.
        J Hepatol. 2015; 63: 705-712
        • Pillai S.
        • Duvvuru S.
        • Bhatnagar P.
        • Foster W.
        • Farmen M.
        • Shankar S.
        • et al.
        The PNPLA3 I148M variant is associated with transaminase elevations in type 2 diabetes patients treated with basal insulin peglispro.
        Pharmacogenomics J. 2018; 18: 487-493
        • Guzman C.B.
        • Duvvuru S.
        • Akkari A.
        • Bhatnagar P.
        • Battioui C.
        • Foster W.
        • et al.
        Coding variants in PNPLA3 and TM6SF2 are risk factors for hepatic steatosis and elevated serum alanine aminotransferases caused by a glucagon receptor antagonist.
        Hepatol Commun. 2018; 2: 561-570
        • Nelson M.R.
        • Tipney H.
        • Painter J.L.
        • Shen J.
        • Nicoletti P.
        • Shen Y.
        • et al.
        The support of human genetic evidence for approved drug indications.
        Nat Genet. 2015; 47: 856-860
        • Stein E.A.
        • Mellis S.
        • Yancopoulos G.D.
        • Stahl N.
        • Logan D.
        • Smith W.B.
        • et al.
        Effect of a monoclonal antibody to PCSK9 on LDL cholesterol.
        N Engl J Med. 2012; 366: 1108-1118
        • Davey Smith G.
        • Hemani G.
        Mendelian randomization: genetic anchors for causal inference in epidemiological studies.
        Hum Mol Genet. 2014; 23: R89-R98
        • Neeland I.J.
        • Kozlitina J.
        Mendelian randomization: using natural genetic variation to assess the causal role of modifiable risk factors in observational studies.
        Circulation. 2017; 135: 755-758
        • Romeo S.
        • Sanyal A.
        • Valenti L.
        Leveraging human genetics to identify potential new treatments for fatty liver disease.
        Cell Metab. 2020; 31: 35-45
        • Valenti L.
        • Dongiovanni P.
        Mutant PNPLA3 I148M protein as pharmacological target for liver disease.
        Hepatology. 2017; 66: 1026-1028
        • Linden D.
        • Ahnmark A.
        • Pingitore P.
        • Ciociola E.
        • Ahlstedt I.
        • Andreasson A.C.
        • et al.
        Pnpla3 silencing with antisense oligonucleotides ameliorates nonalcoholic steatohepatitis and fibrosis in Pnpla3 I148M knock-in mice.
        Mol Metab. 2019; 22: 49-61
        • Hakim A.
        • Zhang X.
        • DeLisle A.
        • Oral E.A.
        • Dykas D.
        • Drzewiecki K.
        • et al.
        Clinical utility of genomic analysis in adults with idiopathic liver disease.
        J Hepatol. 2019; 70: 1214-1221
        • Yuan X.
        • Waterworth D.
        • Perry J.R.
        • Lim N.
        • Song K.
        • Chambers J.C.
        • et al.
        Population-based genome-wide association studies reveal six loci influencing plasma levels of liver enzymes.
        Am J Hum Genet. 2008; 83: 520-528
        • Hirschfield G.M.
        • Liu X.
        • Xu C.
        • Lu Y.
        • Xie G.
        • Lu Y.
        • et al.
        Primary biliary cirrhosis associated with HLA, IL12A, and IL12RB2 variants.
        N Engl J Med. 2009; 360: 2544-2555
        • Liu X.
        • Invernizzi P.
        • Lu Y.
        • Kosoy R.
        • Lu Y.
        • Bianchi I.
        • et al.
        Genome-wide meta-analyses identify three loci associated with primary biliary cirrhosis.
        Nat Genet. 2010; 42: 658-660
        • Mells G.F.
        • Floyd J.A.
        • Morley K.I.
        • Cordell H.J.
        • Franklin C.S.
        • Shin S.Y.
        • et al.
        Genome-wide association study identifies 12 new susceptibility loci for primary biliary cirrhosis.
        Nat Genet. 2011; 43: 329-332
        • Cordell H.J.
        • Han Y.
        • Mells G.F.
        • Li Y.
        • Hirschfield G.M.
        • Greene C.S.
        • et al.
        International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways.
        Nat Commun. 2015; 6: 8019
        • Paziewska A.
        • Habior A.
        • Rogowska A.
        • Zych W.
        • Goryca K.
        • Karczmarski J.
        • et al.
        A novel approach to genome-wide association analysis identifies genetic associations with primary biliary cholangitis and primary sclerosing cholangitis in Polish patients.
        BMC Med Genomics. 2017; 10: 2
        • Karlsen T.H.
        • Franke A.
        • Melum E.
        • Kaser A.
        • Hov J.R.
        • Balschun T.
        • et al.
        Genome-wide association analysis in primary sclerosing cholangitis.
        Gastroenterology. 2010; 138: 1102-1111
        • Melum E.
        • Franke A.
        • Schramm C.
        • Weismuller T.J.
        • Gotthardt D.N.
        • Offner F.A.
        • et al.
        Genome-wide association analysis in primary sclerosing cholangitis identifies two non-HLA susceptibility loci.
        Nat Genet. 2011; 43: 17-19
        • Ellinghaus D.
        • Folseraas T.
        • Holm K.
        • Ellinghaus E.
        • Melum E.
        • Balschun T.
        • et al.
        Genome-wide association analysis in primary sclerosing cholangitis and ulcerative colitis identifies risk loci at GPR35 and TCF4.
        Hepatology. 2013; 58: 1074-1083
        • Ji S.G.
        • Juran B.D.
        • Mucha S.
        • Folseraas T.
        • Jostins L.
        • Melum E.
        • et al.
        Genome-wide association study of primary sclerosing cholangitis identifies new risk loci and quantifies the genetic relationship with inflammatory bowel disease.
        Nat Genet. 2017; 49: 269-273
        • Liu J.Z.
        • Hov J.R.
        • Folseraas T.
        • Ellinghaus E.
        • Rushbrook S.M.
        • Doncheva N.T.
        • et al.
        Dense genotyping of immune-related disease regions identifies nine new risk loci for primary sclerosing cholangitis.
        Nat Genet. 2013; 45: 670-675
        • Raelson J.V.
        • Little R.D.
        • Ruether A.
        • Fournier H.
        • Paquin B.
        • Van Eerdewegh P.
        • et al.
        Genome-wide association study for Crohn's disease in the Quebec Founder Population identifies multiple validated disease loci.
        Proc Natl Acad Sci U S A. 2007; 104: 14747-14752
        • Libioulle C.
        • Louis E.
        • Hansoul S.
        • Sandor C.
        • Farnir F.
        • Franchimont D.
        • et al.
        Novel Crohn disease locus identified by genome-wide association maps to a gene desert on 5p13.1 and modulates expression of PTGER4.
        PLoS Genet. 2007; 3: e58
        • Wellcome Trust Case Control Consortium
        Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls.
        Nature. 2007; 447: 661-678
        • Barrett J.C.
        • Hansoul S.
        • Nicolae D.L.
        • Cho J.H.
        • Duerr R.H.
        • Rioux J.D.
        • et al.
        Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease.
        Nat Genet. 2008; 40: 955-962
        • de Lange K.M.
        • Moutsianas L.
        • Lee J.C.
        • Lamb C.A.
        • Luo Y.
        • Kennedy N.A.
        • et al.
        Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease.
        Nat Genet. 2017; 49: 256-261
        • Jostins L.
        • Ripke S.
        • Weersma R.K.
        • Duerr R.H.
        • McGovern D.P.
        • Hui K.Y.
        • et al.
        Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease.
        Nature. 2012; 491: 119-124