Advertisement
Research Article| Volume 75, ISSUE 3, P514-523, September 2021

Disease-specific eQTL screening reveals an anti-fibrotic effect of AGXT2 in non-alcoholic fatty liver disease

Published:April 20, 2021DOI:https://doi.org/10.1016/j.jhep.2021.04.011

      Highlights

      • Our ‘response-eQTL' approach aimed to discover novel SNP-gene pairs that only function in NAFLD.
      • NAFLD-specific repression of AGXT2 was prominent in rs2291702:CC carriers.
      • Lower AGXT2 expression was associated with worse histological and metabolic features in rs2291702:CC carriers.
      • The reduction of AGXT2 mimicked human NAFLD features in mice, whereas overexpression rescued them.
      • The reduced AGXT2 caused increased cell death due to ER stress activation in HepG2 cells.

      Background & Aims

      Non-alcoholic fatty liver disease (NAFLD) poses an increasing clinical burden. Genome-wide association studies have revealed a limited contribution of genomic variants to the disease, requiring alternative but robust approaches to identify disease-associated variants and genes. We carried out a disease-specific expression quantitative trait loci (eQTL) screen to identify novel genetic factors that specifically act on NAFLD progression on the basis of genotype.

      Methods

      We recruited 125 Korean patients (83 with biopsy-proven NAFLD and 42 without NAFLD) and performed eQTL analyses using 21,272 transcripts and 3,234,941 genotyped and imputed single nucleotide polymorphisms. We then selected eQTLs that were detected only in the NAFLD group, but not in the control group (i.e., NAFLD-eQTLs). An additional cohort of 162 Korean individuals with NAFLD was used for replication. The function of the selected eQTL toward NAFLD development was validated using HepG2, primary hepatocytes and NAFLD mouse models.

      Results

      The NAFLD-specific eQTL screening yielded 242 loci. Among them, AGXT2, encoding alanine-glyoxylate aminotransferase 2, displayed decreased expression in patients with NAFLD homozygous for the non-reference allele of rs2291702, compared to no-NAFLD individuals with the same genotype (p = 4.79 × 10-6). This change was replicated in an additional 162 individuals, yielding a combined p value of 8.05 × 10-8 from a total of 245 patients with NAFLD and 42 controls. Knockdown of AGXT2 induced palmitate-overloaded hepatocyte death by increasing endoplasmic reticulum stress, and exacerbated NAFLD diet-induced liver fibrosis in mice, while overexpression of AGXT2 attenuated liver fibrosis and steatosis.

      Conclusions

      We identified a new molecular role for AGXT2 in NAFLD. Our overall approach will serve as an efficient tool for uncovering novel genetic factors that contribute to liver steatosis and fibrosis in patients with NAFLD.

      Lay summary

      Elucidating causal genes for non-alcoholic fatty liver disease (NAFLD) has been challenging due to limited tissue availability and the polygenic nature of the disease. Using liver and blood samples from 125 Korean individuals (83 with NAFLD and 42 without NAFLD), we devised a new analytic method to identify causal genes. Among the candidates, we found that AGXT2-rs2291702 protects against liver fibrosis in a genotype-dependent manner with the potential for therapeutic interventions. Our approach enables the discovery of causal genes that act on the basis of genotype.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Hepatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Eslam M.
        • George J.
        Genetic contributions to NAFLD: leveraging shared genetics to uncover systems biology.
        Nat Rev Gastroenterol Hepatol. 2020; 17: 40-52https://doi.org/10.1038/s41575-019-0212-0
        • Estes C.
        • Anstee Q.M.
        • Arias-Loste M.T.
        • Bantel H.
        • Bellentani S.
        • Caballeria J.
        • et al.
        Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016–2030.
        J Hepatol. 2018; 69: 896-904https://doi.org/10.1016/j.jhep.2018.05.036
        • Segovia-Miranda F.
        • Morales-Navarrete H.
        • Kücken M.
        • Moser V.
        • Seifert S.
        • Repnik U.
        • et al.
        Three-dimensional spatially resolved geometrical and functional models of human liver tissue reveal new aspects of NAFLD progression.
        Nat Med. 2019; 25: 1885-1893https://doi.org/10.1038/s41591-019-0660-7
        • Eslam M.
        • Valenti L.
        • Romeo S.
        Genetics and epigenetics of NAFLD and NASH: clinical impact.
        J Hepatol. 2018; 68: 268-279https://doi.org/10.1016/j.jhep.2017.09.003
        • Farrell G.C.
        • Larter C.Z.
        Nonalcoholic fatty liver disease: from steatosis to cirrhosis.
        Hepatology. 2006; 43: 99-112https://doi.org/10.1002/hep.20973
        • Friedman S.L.
        • Neuschwander-Tetri B.A.
        • Rinella M.
        • Sanyal A.J.
        Mechanisms of NAFLD development and therapeutic strategies.
        Nat Med. 2018; 24: 908-922https://doi.org/10.1038/s41591-018-0104-9
        • Trépo E.
        • Valenti L.
        Update on NAFLD genetics: from new variants to the clinic.
        J Hepatol. 2020; https://doi.org/10.1016/j.jhep.2020.02.020
        • Anstee Q.M.
        • Darlay R.
        • Cockell S.
        • Meroni M.
        • Govaere O.
        • Tiniakos D.
        • et al.
        Genome-wide association study of non-alcoholic fatty liver and steatohepatitis in a histologically characterised cohort.
        J Hepatol. 2020; 73: 505-515https://doi.org/10.1016/j.jhep.2020.04.003
        • Sookoian S.
        • Pirola C.J.
        Genetic predisposition in nonalcoholic fatty liver disease.
        Clin Mol Hepatol. 2017; 23: 1-12https://doi.org/10.3350/cmh.2016.0109
        • Dongiovanni P.
        • Stender S.
        • Pietrelli A.
        • Mancina R.M.
        • Cespiati A.
        • Petta S.
        • et al.
        Causal relationship of hepatic fat with liver damage and insulin resistance in nonalcoholic fatty liver.
        J Intern Med. 2018; 283: 356-370https://doi.org/10.1111/joim.12719
        • Kawaguchi T.
        • Shima T.
        • Mizuno M.
        • Mitsumoto Y.
        • Umemura A.
        • Kanbara Y.
        • et al.
        Risk estimation model for nonalcoholic fatty liver disease in the Japanese using multiple genetic markers.
        PLoS One. 2018; 13: 1-16https://doi.org/10.1371/journal.pone.0185490
        • Rockman M.V.
        • Kruglyak L.
        Genetics of global gene expression.
        Nat Rev Genet. 2006; 7: 862-872https://doi.org/10.1038/nrg1964
        • Albert F.W.
        • Kruglyak L.
        The role of regulatory variation in complex traits and disease.
        Nat Rev Genet. 2015; 16: 197-212https://doi.org/10.1038/nrg3891
        • Nica A.C.
        • Dermitzakis E.T.
        Expression quantitative trait loci: present and future.
        Philos Trans R Soc B Biol Sci. 2013; 368https://doi.org/10.1098/rstb.2012.0362
        • Müller-Deile J.
        • Jobst-Schwan T.
        • Schiffer M.
        Moving beyond GWAS and eQTL analysis to validated hits in chronic kidney disease.
        Cell Metab. 2019; 29: 9-10https://doi.org/10.1016/j.cmet.2018.12.009
        • Montgomery S.B.
        • Sammeth M.
        • Gutierrez-Arcelus M.
        • Lach R.P.
        • Ingle C.
        • Nisbett J.
        • et al.
        Transcriptome genetics using second generation sequencing in a Caucasian population.
        Nature. 2010; 464: 773-777https://doi.org/10.1038/nature08903
        • Rodionov R.N.
        • Jarzebska N.
        • Weiss N.
        • Lentz S.R.
        AGXT2: a promiscuous aminotransferase.
        Trends Pharmacol Sci. 2014; 35: 575-582https://doi.org/10.1016/j.tips.2014.09.005
        • Caplin B.
        • Wang Z.
        • Slaviero A.
        • Tomlinson J.
        • Dowsett L.
        • Delahaye M.
        • et al.
        Alanine-glyoxylate aminotransferase-2 metabolizes endogenous methylarginines, regulates NO, and controls blood pressure.
        Arterioscler Thromb Vasc Biol. 2012; 32: 2892-2900https://doi.org/10.1161/ATVBAHA.112.254078
        • Nicholson G.
        • Rantalainen M.
        • Li J.V.
        • Maher A.D.
        • Malmodin D.
        • Ahmadi K.R.
        • et al.
        A genome-wide metabolic QTL analysis in europeans implicates two Loci shaped by recent positive selection.
        PLoS Genet. 2011; 7https://doi.org/10.1371/journal.pgen.1002270
        • O’Sullivan J.F.
        • Morningstar J.E.
        • Yang Q.
        • Zheng B.
        • Gao Y.
        • Jeanfavre S.
        • et al.
        Dimethylguanidino valeric acid is a marker of liver fat and predicts diabetes.
        J Clin Invest. 2017; 127: 4394-4402https://doi.org/10.1172/JCI95995
        • Rueedi R.
        • Ledda M.
        • Nicholls A.W.
        • Salek R.M.
        • Marques-Vidal P.
        • Morya E.
        • et al.
        Genome-wide association study of metabolic traits reveals novel gene-metabolite-disease links.
        PLoS Genet. 2014; 10https://doi.org/10.1371/journal.pgen.1004132
        • Schadt E.E.
        • Molony C.
        • Chudin E.
        • Hao K.
        • Yang X.
        • Lum P.Y.
        • et al.
        Mapping the genetic architecture of gene expression in human liver.
        PLoS Biol. 2008; 6: 1020-1032https://doi.org/10.1371/journal.pbio.0060107
        • Koo B.K.
        • Joo S.K.
        • Kim D.
        • Bae J.M.
        • Park J.H.
        • Kim J.H.
        • et al.
        Additive effects of PNPLA3 and TM6SF2 on the histological severity of non-alcoholic fatty liver disease.
        J Gastroenterol Hepatol. 2018; 33: 1277-1285https://doi.org/10.1111/jgh.14056
        • Brunt E.M.
        • Kleiner D.E.
        • Wilson L.A.
        • Belt P.
        • Neuschwander-Tetri B.A.
        Nonalcoholic fatty liver disease (NAFLD) activity score and the histopathologic diagnosis in NAFLD: distinct clinicopathologic meanings.
        Hepatology. 2011; 53: 810-820https://doi.org/10.1002/hep.24127
        • Love M.I.
        • Huber W.
        • Anders S.
        Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.
        Genome Biol. 2014; 15: 1-21https://doi.org/10.1186/s13059-014-0550-8
        • Shabalin A.A.
        Matrix eQTL: ultra fast eQTL analysis via large matrix operations.
        Bioinformatics. 2012; 28: 1353-1358https://doi.org/10.1093/bioinformatics/bts163
        • Aguet F.
        • Brown A.A.
        • Castel S.E.
        • Davis J.R.
        • He Y.
        • Jo B.
        • et al.
        Genetic effects on gene expression across human tissues.
        Nature. 2017; 550: 204-213https://doi.org/10.1038/nature24277
        • Schmidt E.M.
        • Zhang J.
        • Zhou W.
        • Chen J.
        • Mohlke K.L.
        • Chen Y.E.
        • et al.
        GREGOR: evaluating global enrichment of trait-associated variants in epigenomic features using a systematic, data-driven approach.
        Bioinformatics. 2015; 31: 2601-2606https://doi.org/10.1093/bioinformatics/btv201
        • MacParland S.A.
        • Liu J.C.
        • Ma X.Z.
        • Innes B.T.
        • Bartczak A.M.
        • Gage B.K.
        • et al.
        Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations.
        Nat Commun. 2018; 9: 1-21https://doi.org/10.1038/s41467-018-06318-7
        • Matsumoto M.
        • Hada N.
        • Sakamaki Y.
        • Uno A.
        • Shiga T.
        • Tanaka C.
        • et al.
        An improved mouse model that rapidly develops fibrosis in non-alcoholic steatohepatitis.
        Int J Exp Pathol. 2013; 94: 93-103https://doi.org/10.1111/iep.12008
        • Lebeaupin C.
        • Vallée D.
        • Hazari Y.
        • Hetz C.
        • Chevet E.
        • Bailly-Maitre B.
        Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease.
        J Hepatol. 2018; 69: 927-947https://doi.org/10.1016/j.jhep.2018.06.008
        • Innocenti F.
        • Cooper G.M.
        • Stanaway I.B.
        • Gamazon E.R.
        • Smith J.D.
        • Mirkov S.
        • et al.
        Identification, replication, and functional fine-mapping of expression quantitative trait loci in primary human liver tissue.
        PLoS Genet. 2011; 7https://doi.org/10.1371/journal.pgen.1002078
        • Strunz T.
        • Grassmann F.
        • Gayán J.
        • Nahkuri S.
        • Souza-Costa D.
        • Maugeais C.
        • et al.
        A mega-analysis of expression quantitative trait loci (eQTL) provides insight into the regulatory architecture of gene expression variation in liver.
        Sci Rep. 2018; 8: 1-11https://doi.org/10.1038/s41598-018-24219-z
        • Etheridge A.S.
        • Gallins P.J.
        • Jima D.
        • Broadaway K.A.
        • Ratain M.J.
        • Schuetz E.
        • et al.
        A new liver expression quantitative trait locus map from 1,183 individuals provides evidence for novel expression quantitative trait loci of drug response, metabolic, and sex-biased phenotypes.
        Clin Pharmacol Ther. 2019; 0https://doi.org/10.1002/cpt.1751
        • Liu W.
        • Anstee Q.M.
        • Wang X.
        • Gawrieh S.
        • Gamazon E.R.
        • Athinarayanan S.
        • et al.
        Transcriptional regulation of PNPLA3 and its impact on susceptibility to nonalcoholic fatty liver Disease (NAFLD) in humans.
        Aging (Albany NY). 2017; 9: 26-40https://doi.org/10.18632/aging.101067
        • Pashos E.E.
        • Park Y.S.
        • Wang X.
        • Raghavan A.
        • Yang W.
        • Abbey D.
        • et al.
        Large, diverse population cohorts of hiPSCs and derived hepatocyte-like cells reveal functional genetic variation at blood lipid-associated loci.
        Cell Stem Cell. 2017; 20 (e10): 558-570https://doi.org/10.1016/j.stem.2017.03.017
        • Thangapandi V.R.
        • Knittelfelder O.
        • Brosch M.
        • Patsenker E.
        • Vvedenskaya O.
        • Buch S.
        • et al.
        Loss of hepatic Mboat7 leads to liver fibrosis.
        Gut. 2020; (epub)https://doi.org/10.1136/gutjnl-2020-320853
        • van den Berg E.H.
        • Flores-Guerrero J.L.
        • Gruppen E.G.
        • de Borst M.H.
        • Wolak-Dinsmore J.
        • Connelly M.A.
        • et al.
        Non-alcoholic fatty liver disease and risk of incident type 2 diabetes: role of circulating branched-chain amino acids.
        Nutrients. 2019; 11https://doi.org/10.3390/nu11030705
        • Hoyles L.
        • Fernández-Real J.M.
        • Federici M.
        • Serino M.
        • Abbott J.
        • Charpentier J.
        • et al.
        Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women.
        Nat Med. 2018; 24: 1070-1080https://doi.org/10.1038/s41591-018-0061-3