PKCα/ZFP64/CSF1 axis resets the tumor microenvironment and fuels anti-PD1 resistance in hepatocellular carcinoma

Graphical abstract

Highlights
- ZFP64 is frequently upregulated in anti-PD1 resistant HCC.
- PKCα/ZFP64/CSF1 axis is critical for triggering immune evasion and anti-PD1 tolerance.
- Gö6976 and lenvatinib overcome anti-PD1 resistance by blocking the PKCα/ZFP64/CSF1 axis.
- Gö6976 combined with anti-PD1 could be an effective new strategy in HCC therapy.

Authors
Chuan-Yuan Wei, Meng-Xuan Zhu, Peng-Fei Zhang, ..., Jia-Bin Fan, Ai-Wu Ke, Jia Fan

Correspondence
fan.jia@zs-hospital.sh.cn (J. Fan), ke.aiwu@zs-hospital.sh.cn (A.-W. Ke), cai.jiabin@zs-hospital.sh.cn (J.-B. Fan).

Lay summary
Despite remarkable treatment progress, most patients with hepatocellular carcinoma respond poorly to anti-PD1 therapy (a type of immunotherapy). A deeper insight into the tolerance mechanisms to this therapy is urgently needed. Herein, we unravel a previously unexplored mechanism linking tumor progression, macrophage polarization, and anti-PD1 resistance, and offer an attractive novel target for anti-PD1 combination therapy, which may benefit patients with hepatocellular carcinoma.

https://doi.org/10.1016/j.jhep.2022.02.019
© 2022 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the Liver. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). J. Hepatol. 2022, 77, 163–176
PKCα/ZFP64/CSF1 axis resets the tumor microenvironment and fuels anti-PD1 resistance in hepatocellular carcinoma

Chuan-Yuan Wei1,2,†, Meng-Xuan Zhu3,‡, Peng-Fei Zhang3,†, Xiao-Yong Huang1, Jin-Kai Wan4, Xiu-Zhong Yao5, Ze-Tao Hu6, Xiao-Qiang Chai1, Rui Peng1, Xuan Yang1, Chao Gao1, Jian Gao1, Si-Wei Wang1, Yi-Min Zheng1, Zheng Tang1, Qiang Gao1, Jian Zhou1, Jia-Bin Fan1,*, Ai-Wu Ke1,*

1Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China; 2Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China; 3Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China; 4Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, P. R. China; 5Department of Radiology, Zhongshan Hospital of Fudan University, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, 200032, P. R. China; 6Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, 200433, P. R. China

© 2022 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the Liver. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Background & Aims: Despite remarkable advances in treatment, most patients with hepatocellular carcinoma (HCC) respond poorly to anti-programmed cell death 1 (anti-PD1) therapy. A deeper insight into the tolerance mechanism of HCC against this therapy is urgently needed.

Methods: We performed next-generation sequencing, multiplex immunofluorescence, and dual-color immunohistochemistry and constructed an orthotopic HCC xenograft tumor model to identify the key gene associated with anti-PD1 tolerance. A spontaneously tumorigenic transgenic mouse model, an in vitro coculture system, mass cytometry, and multiplex immunofluorescence were used to explore the biological function of zinc finger protein 64 (ZFP64) on tumor progression and immune escape. Molecular and biochemical strategies like RNA-sequencing, chromatin immunoprecipitation-sequencing and mass spectrometry were used to gain insight into the underlying mechanisms of ZFP64.

Results: We showed that ZFP64 is frequently upregulated in tumor tissues from patients with anti-PD1-resistant HCC. Elevated ZFP64 drives anti-PD1 resistance by shifting macrophage polarization toward an alternative activation phenotype (M2) and fostering an inhibitory tumor microenvironment. Mechanistically, we primarily demonstrated that protein kinase C alpha (PKCα) directly phosphorylates ZFP64 at S226, leading to its nuclear translocation and the transcriptional activation of macrophage colony-stimulating factor (CSF1). HCC-derived CSF1 transforms macrophages to the M2 phenotype to drive immune escape and anti-PD1 tolerance. Notably, G6976, a protein kinase inhibitor, and lenvatinib, a multi-kinase inhibitor, reset the tumor microenvironment and restore sensitivity to anti-PD1 by blocking the PKCα/ZFP64/CSF1 axis.

Conclusions: We propose that the PKCα/ZFP64/CSF1 axis is critical for triggering immune evasion and anti-PD1 tolerance. Inhibiting this axis with G6976 or lenvatinib overcomes anti-PD1 resistance in HCC.

Key summary: Despite remarkable treatment progress, most patients with hepatocellular carcinoma respond poorly to anti-PD1 therapy (a type of immunotherapy). A deeper insight into the tolerance mechanisms to this therapy is urgently needed. Herein, we unravel a previously unexplored mechanism linking tumor progression, macrophage polarization, and anti-PD1 resistance, and offer an attractive novel target for anti-PD1 combination therapy, which may benefit patients with hepatocellular carcinoma.

Introduction

Hepatocellular carcinoma (HCC) is one of the most prevalent and life-threatening malignancies globally, and a considerable proportion of patients with HCC are diagnosed at advanced stages and, therefore, cannot undergo curative surgery.1,2 Recently, immune checkpoint blockade (ICB) therapy, especially with antibodies against the programmed cell death (PD1/L) signal, has led to impressive breakthroughs in cancer treatment.3 However, randomized clinical trials of anti-PD1 therapy (KEYNOTE-240 and CheckMate-459) in patients with HCC have not shown statistically significant improvements, potentially owing to primary or acquired anti-PD1 resistance.4,5 There is an urgent need to explore mechanisms of resistance to ICB therapy, and identify a combined therapeutic strategy to enhance the effectiveness of ICB therapy in HCC.
Fig. 1. ZFP64 is tightly correlated with anti-PD1 monotherapy tolerance and poor prognosis in patients with HCC. (A) Schematic diagram of the recruitment of patients and specimens in the training cohort. (B) Representative MRIs of patients with PD and PR. (C) Volcano plots showing DEGs in the training (PD vs. PR, left panel) and TCGA-LIHC (T vs. N, right panel) cohorts. |log2FC| > 1, q-value < 0.05. (D) Venn diagram showing an overlap of DEGs between the 2 cohorts. (E) Heatmap showing the overlapping genes in the Venn diagram. (F) Representative images of ZFP64 protein detection using IF assays. Red arrows (ZFP64+ cells), green arrows (CD45+ cells). (G) Overlapping genes in the Venn diagram. (H) Representative images of ZFP64 protein detection using IF assays. Red arrows (ZFP64+ cells), green arrows (CD45+ cells). (I) Overall survival rate (%) of ZFP64 High vs. ZFP64 Low (n = 101). (J) Tumor weight (g) in the pre-treatment and post-treatment groups. (K) Disease-free survival (%). (L) Multivariate analysis to identify independent factors of OS (COX-DF) and their hazard ratios (HR).
As an immune-exempt organ, the liver contains a large number of macrophages, including resident (Kupffer cells) and recruited macrophages. Macrophages that infiltrate tumor tissues, also known as tumor-associated macrophages (TAMs), are functionally and phenotypically similar to alternately activated (M2-like) macrophages, and play an important role in tumor progression, immune escape and ICB therapy resistance. Several studies have uncovered the marked effect of TAMs on the efficacy of ICB therapy. For example, a unique population of macrophages highly expressing CD73 was reported to persist during anti-PD1 treatment, and consecutive CD73 knockout improved the efficacy of anti-PD1 therapy. Thus, reversing the M2 phenotype, blocking the recruitment of TAMs, and stopping TAMs infiltration are expected to be effective strategies to improve the efficacy of ICB therapy in HCC.

The zinc finger protein 64 (ZFP64) gene, located at 20q13.2, was identified as a new Kruppel-like C2H2 transcriptional factor. The amplification of genes in the 20q13.12–13.33 locus was reported to be associated with increased metastasis and reduced overall survival (OS) in patients with HCC. Meanwhile, ZFP64 was revealed to be upregulated in liver metastatic tissues of colorectal carcinoma. A recent study has shown that ZFP64 is necessary for the continuous expression of mixed-lineage leukemia (MLL) fusion proteins, and ZFP64 knockout completely inhibited leukemic cell proliferation. These findings indicate that abnormal ZFP64 expression plays a key role in tumor development.

Here, we aimed to identify differentially expressed genes (DEGs) associated with anti-PD1 tolerance via next-generation sequencing. We identified crucial genes/pathways and a mechanism of the anti-PD1 tolerance in HCC that involves ZFP64, its upstream regulator, and its downstream effector. Our findings primarily demonstrated a previously unexplored mechanism linking tumor anti-PD1 tolerance, provided a predictive indicator for monitoring anti-PD1 efficacy, and offered a potential combination strategy against HCC.

Materials and methods

Details regarding the materials and methods are described in the supplementary information. Reagents used in this study are listed in the CTAT table.

Results

ZFP64 is a crucial gene associated with anti-PD1 tolerance and unfavorable prognosis in patients with HCC

We performed next-generation sequencing to analyze biopsy specimens from patients with HCC scheduled to receive anti-PD1 therapy (Fig. 1A). The treatment efficacy was monitored by MRI bimonthly (Fig. 1B), and assessed according to iRECIST. A total of 41 patients were recruited, and the objective response and disease control rates were 17.1% and 61.0%, respectively (Table S1, discovery cohort). Ten progressive disease (PD) and 7 partial response (PR) samples were selected for sequencing and 2,090 DEGs (PD vs. PR, Fig. 1C, left panel) were identified. Of note, immune checkpoint molecules, such as PD1, PD-L1, and PD-L2, were not included (Fig. S1A). Then we performed an intersection of DEGs in the discovery cohort and The Cancer Genome Atlas (TCGA) cohort (tumor vs. normal, Fig. 1C, right panel), and 39 upregulated and 3 downregulated genes were identified, as illustrated in Fig. 1D-E.

ZFP64, one of the upregulated genes, was selected for further study. In the discovery cohort, ZFP64, primarily in the nucleus, was consistently increased in PD samples compared to that in SD or PR samples (Fig. 1F), while CD45-positive immune cells were decreased in the TIME of PD samples. Using an orthotopic xenograft tumor model, we found that the tumor burden in the ZFP64-overexpressing group (Hepa1-6-ZFP64) was larger than that in the empty vector (EV) group (Hepa1-6-EV) (Fig. 1G). Notably, the tumor burden in the Hepa1-6-EV group was significantly decreased after anti-PD1 treatment compared with that after anti-IgG treatment, whereas no statistical difference was observed in Hepa1-6-ZFP64 groups.

In the TCGA cohort, ZFP64 expression was significantly elevated in HCC, and the AUROC was 0.903 (Fig. S1B-D). We performed immunoblotting of HCC samples and found that ZFP64 was upregulated in tumor tissues compared to normal tissues (Fig. S1E). In validation cohorts (TMA1 and TMA2), ZFP64 levels were significantly increased in HCC tumor tissues compared to in normal tissues, and elevated ZFP64 levels were often accompanied by less lymphocyte infiltration in the TIME (Fig. 1H-I). The AUROC of ZFP64 was demonstrated to be 0.692 (Fig. 1J).

Prognostic analysis showed that elevated ZFP64 correlated with malignant phenotype and poor prognosis in patients with HCC in the TCGA and TMA2 cohorts (Fig. 1K and S1F, Table S2). Importantly, multivariate logistic regression analyses showed that high level of ZFP64 were independent predictors for postoperative OS and disease-free survival (Fig. 1L, Table S3). Thus, ZFP64 is a key gene associated with poor prognosis and anti-PD1 resistance in HCC.

ZFP64 promotes HCC progression and induces an inhibitory TIME

We then explored the function of ZFP64 in HCC. ZFP64 was highly expressed in HCC cell lines, especially those with high metastatic potential (Fig. S2A-B). We then generated the stable ZFP64-knockout (single-guide ZFP64) MHCC97H and ZFP64-overexpressing PLC/PRF/5 and HepG2 cell lines (Fig. S2C-F), and found that cell proliferation, motility, and invasion abilities were increased in ZFP64high cells compared with those in ZFP64low cells (Fig. S3A-B). By employing subcutaneous xenograft tumor models, we found that ZFP64high groups have higher tumor weights and fewer apoptotic cells than ZFP64low groups (Fig. S3C-D).

Immunoblotting and qRT-PCR assays showing the efficiency of ZFP64 overexpression. Bioluminescence images of HCC tumors in C57BL/6 mice are shown at the endpoint. The color scale bar depicts the photon flux emitted from tumors. Tumor weight data were analyzed statistically (n = 6).

(1) Double IHC staining with ZFP64-specific and CD45-specific antibodies in TMA1 (upper panel). Percentage of cases were identified as a new Kruppel-like C2H2 transcriptional factor. The amplification of genes in the 20q13.12–13.33 locus was reported to be associated with increased metastasis and reduced overall survival (OS) in patients with HCC. Meanwhile, ZFP64 was revealed to be upregulated in liver metastatic tissues of colorectal carcinoma. A recent study has shown that ZFP64 is necessary for the continuous expression of mixed-lineage leukemia (MLL) fusion proteins, and ZFP64 knockout completely inhibited leukemic cell proliferation. These findings indicate that abnormal ZFP64 expression plays a key role in tumor development.

Here, we aimed to identify differentially expressed genes (DEGs) associated with anti-PD1 tolerance via next-generation sequencing. We identified crucial genes/pathways and a mechanism of the anti-PD1 tolerance in HCC that involves ZFP64, its upstream regulator, and its downstream effector. Our findings primarily demonstrated a previously unexplored mechanism linking tumor anti-PD1 tolerance, provided a predictive indicator for monitoring anti-PD1 efficacy, and offered a potential combination strategy against HCC.

Materials and methods

Details regarding the materials and methods are described in the supplementary information. Reagents used in this study are listed in the CTAT table.

Results

ZFP64 is a crucial gene associated with anti-PD1 tolerance and unfavorable prognosis in patients with HCC

We performed next-generation sequencing to analyze biopsy specimens from patients with HCC scheduled to receive anti-PD1 therapy (Fig. 1A). The treatment efficacy was monitored by MRI bimonthly (Fig. 1B), and assessed according to iRECIST. A total of 41 patients were recruited, and the objective response and disease control rates were 17.1% and 61.0%, respectively (Table S1, discovery cohort). Ten progressive disease (PD) and 7 partial response (PR) samples were selected for sequencing and 2,090 DEGs (PD vs. PR, Fig. 1C, left panel) were identified. Of note, immune checkpoint molecules, such as PD1, PD-L1, and PD-L2, were not included (Fig. S1A). Then we performed an intersection of DEGs in the discovery cohort and The Cancer Genome Atlas (TCGA) cohort (tumor vs. normal, Fig. 1C, right panel), and 39 upregulated and 3 downregulated genes were identified, as illustrated in Fig. 1D-E.

ZFP64, one of the upregulated genes, was selected for further study. In the discovery cohort, ZFP64, primarily in the nucleus, was consistently increased in PD samples compared to that in SD or PR samples (Fig. 1F), while CD45-positive immune cells were decreased in the TIME of PD samples. Using an orthotopic xenograft tumor model, we found that the tumor burden in the ZFP64-overexpressing group (Hepa1-6-ZFP64) was larger than that in the empty vector (EV) group (Hepa1-6-EV) (Fig. 1G). Notably, the tumor burden in the Hepa1-6-EV group was significantly decreased after anti-PD1 treatment compared with that after anti-IgG treatment, whereas no statistical difference was observed in Hepa1-6-ZFP64 groups.

In the TCGA cohort, ZFP64 expression was significantly elevated in HCC, and the AUROC was 0.903 (Fig. S1B-D). We performed immunoblotting of HCC samples and found that ZFP64 was upregulated in tumor tissues compared to normal tissues (Fig. S1E). In validation cohorts (TMA1 and TMA2), ZFP64 levels were significantly increased in HCC tumor tissues compared to in normal tissues, and elevated ZFP64 levels were often accompanied by less lymphocyte infiltration in the TIME (Fig. 1H-I). The AUROC of ZFP64 was demonstrated to be 0.692 (Fig. 1J).

Prognostic analysis showed that elevated ZFP64 correlated with malignant phenotype and poor prognosis in patients with HCC in the TCGA and TMA2 cohorts (Fig. 1K and S1F, Table S2). Importantly, multivariate logistic regression analyses showed that high level of ZFP64 were independent predictors for postoperative OS and disease-free survival (Fig. 1L, Table S3). Thus, ZFP64 is a key gene associated with poor prognosis and anti-PD1 resistance in HCC.

ZFP64 promotes HCC progression and induces an inhibitory TIME

We then explored the function of ZFP64 in HCC. ZFP64 was highly expressed in HCC cell lines, especially those with high metastatic potential (Fig. S2A-B). We then generated the stable ZFP64-knockout (single-guide ZFP64) MHCC97H and ZFP64-overexpressing PLC/PRF/5 and HepG2 cell lines (Fig. S2C-F), and found that cell proliferation, motility, and invasion abilities were increased in ZFP64high cells compared with those in ZFP64low cells (Fig. S3A-B). By employing subcutaneous xenograft tumor models, we found that ZFP64high groups have higher tumor weights and fewer apoptotic cells than ZFP64low groups (Fig. S3C-D).
Fig. 2. ZFP64 accelerates tumor progression and induces a suppressive TIME. (A) Workflow of the spontaneous HCC model. Hepatic ZFP64 overexpression following injection of AAV8 vectors into the tail vein of transgenic mice. Sixty mice were randomly divided into 2 groups. (B) Periodical detection of tumor development and progression using microMRI; representative images are presented at the endpoint. Tumor sites are indicated by yellow arrows. (C-D) Tumor sites in livers (C) and lungs (D) were detected by H&E staining, and indicated by yellow arrows. (E-F) t-SNE analysis of CyTOF data of immune cells from tumor tissues. (G) The heatmap showing the expression of target proteins in all 11 subclusters. (H) Violin plots representing the quantification of tumor-infiltrating immune cells. (I) Representative pictures of mIF analysis for CD4 (yellow arrows), CD8 (green arrows), F4/80 and CD206 (white arrows) markers. (J) Quantification of corresponding immune cells by mIF analysis. AAV8, adeno-associated virus serotype 8; CyTOF, mass cytometry by time of flight; HCC, hepatocellular carcinoma; mIF, multiplex immunofluorescence; TIME, tumor immune microenvironment; t-SNE, t-distributed stochastic neighbor embedding. (This figure appears in color on the web.)
Fig. 3. HCC-expressing ZFP64 induces recruitment and M2 polarization of macrophages. (A) Schematic diagram showing HCC cells cocultured with macrophages using a 0.4-μm pore size Transwell system. (B) CD163 and CD206 expression in macrophages detected by FCM. (C) CD206, Arg1, IL-10, and TGF-β mRNA levels in macrophages detected by qRT-PCR. (D) Secreted IL-10 and TGF-β in the supernatants of macrophages detected by ELISA. (E) Chemotactic migration assays of macrophages using the supernatant of PLC/PRF/5-EV or -ZFP64 cells. (F) CFSE histograms detecting the inhibition of T-cell proliferation by macrophages after treatment with the supernatant of PLC/PRF/5-EV or -ZFP64 cells. (G) IFN-γ secretion by CD8+ T cells in the assay in (F), measured by ELISA. FCM, flow cytometry; HCC, hepatocellular carcinoma; qRT-PCR, quantitative reverse-transcription PCR. (This figure appears in color on the web.)
Fig. 4. HCC-expressing ZFP64 promotes macrophage polarization and recruitment via CSF1 transcription. (A) Volcano plot showing DEGs between PLC/PRF/5-ZFP64 and PLC/PRF/5-EV cells. |log2FC| > 1, p-value <0.05. (B–C) Density plot showing the ChIP-sequencing result of high-confidence ZFP64 peaks, ranked by intensity. (D) ZFP64 ChIP-sequencing-derived de novo motif logo, distribution, and E-value of the ZFP64 binding motif. (E) BETA plot of combined computational
Then, we employed a spontaneous tumor model in HBV-transgenic mice (Tg[Alb1HBV/44Bri/J]) and overexpressed hepatic ZFP64 using an adeno-associated virus serotype 8 vector (Fig. 2A and 5A–B). When mice were 15 months old, we collected the liver and lung tissues, and found that the ZFP64-overexpressing group showed increased incidences of cirrhosis, tumorigenesis, lung metastasis, larger tumor sizes, more tumor lesions, and fewer apoptotic cells relative to those in the EV group (Fig. 2B–D and 5C–D).

Using mass cytometry by time of flight (CyTOF) and t-distributed stochastic neighbor embedding analysis, the total cell population was divided into 11 subclusters, and macrophages were increased significantly, while CD8+ and CD4+ T cells were decreased in the ZFP64-overexpressing group (Fig. 2E–H). Further analysis showed that the increased macrophages predominantly presented an M2-phenotype (Fig. 5A–F). Multiplex immunofluorescence assay confirmed the results of CyTOF (Fig. 2I–J). Additionally, we developed an orthotopic xenograft tumor model and further confirmed that ZFP64 knockdown delayed tumor progression and improved the tumor microenvironment (Fig. 5G–H). These results indicate that ZFP64 promotes tumor progression and induces a suppressive TIME.

HCC-derived ZFP64 induces recruitment and M2-like polarization of macrophages

Since TAMs are powerful inducers of immunosuppression, we speculated that ZFP64 induced immunosuppression by promoting macrophage polarization and recruitment. Thus, we treated THP1 cells with phorbol-12-myristate-13-acetate (PMA) to differentiate them into macrophages (Fig. 3A). After being cocultured with ZFP64high HCC cells, macrophages expressed high levels of CD163 and CD206 membrane proteins, showed an upregulation of CD206, ARG-1, IL-10, and TGF-β mRNA, and produced more IL-10 and TGF-β1 (Fig. 3B–D). Using a chemotactic migration assay, we found that ZFP64high HCC cells promoted the chemotactic recruitment of macrophages (Fig. 3E). Moreover, macrophages cocultured with ZFP64high HCC cells strongly suppressed T-cell proliferation and activation compared to those cocultured with ZFP64low HCC cells (Fig. 3F–G). Together, these results suggest that ZFP64-overexpressing HCC cells promote macrophage recruitment and M2-like polarization.

ZFP64 promotes macrophage polarization and recruitment via transcriptional CSF1 activation

To identify targets regulated by ZFP64, we performed RNA-sequencing and chromatin immunoprecipitation (ChIP)-sequencing in PLC/PRF/5 cells (Fig. 4A–C). Using de novo motif analysis, we derived a 20-nucleotide sequence motif closely correlated with ZFP64 occupancy (Fig. 4D). Next, we used the binding and expression target analysis (BETA) software to incorporate the ChIP-sequencing and RNA-sequencing data, and found that ZFP64 functioned both as a transcriptional activator and repressor, but more genes appear to be activated (Fig. 4E).

Subsequently, we took an intersection of the RNA-sequencing and ChIP-sequencing data and obtained 85 genes (Fig. 4F). By performing KEGG analysis, we found that elevated ZFP64 was associated with RAS/MAPK, PI3K/AKT, and TGF-β pathways, and confirmed that elevated ZFP64 increased p-AKT and p-ERK1/2 levels by immunoblotting (Fig. 5A–B). Gene ontology analysis revealed that enhanced ZFP64 was related to monocyte/macrophage activation and migration (Fig. 5C), and associated genes are presented using a heatmap (Fig. 5D). The correlation analyses showed that ZFP64 was correlated with most of the genes, including CSF1, in TCGA cohort (Fig. 5E). Using a 102-cytokine array kit, we observed elevated CSF1 in the supernatant of PLC/PRF/5-ZFP64 cells compared with those in PLC/PRF/5-EV cells (Fig. 5F–J). Additionally, we further confirmed that ZFP64 bound to a, b, and c sites of the CSF1 promoter region using a ChIP-qPCR assay (Fig. 5G).

Similarly, we confirmed that high levels of CSF1 were present in ZFP64high cells compared with those in ZFP64low cells (Fig. 4H–J). Then we cloned the CSF1 promoter region into a luciferase reporter plasmid, and found that all the 3 fragments, including P1 (-2,000 to +100), P2 (-1,300 to +100), and P3 (-600 to +100), could activate the luciferase reporter, indicating that the P3 fragment is sufficient for ZFP64-mediated transcriptional activation (Fig. 4K). Using the JASPAR database, we found that the P3 fragment contained 4 putative ZFP64 binding sites. Mutation of a (-346, -333), b (-301, -288), and c (+3, +16) sites, but not the d (+75, +88) site, partially attenuated the ZFP64-mediated enhancement of CSF1 promoter reporter activity, whereas the combined mutation of the a, b, and c sites completely abolished its activity (Fig. 4L). Additionally, we further confirmed that ZFP64 bound to a, b, and c sites of the CSF1 promoter region using a ChIP-qPCR assay (Fig. 5G).

Then, we investigated the possibility that CSF1 is a primary effector of ZFP64-mediated processes. CSF1 knockdown attenuated the levels of CD163 and CD206 (membrane proteins), CD206, ARG-1, IL-10, and TGF-β (mRNA), IL-10 and TGF-β (secreted proteins), and the chemotactic migration of macrophages induced by ZFP64high HCC cells (Fig. 4M–P and 5D). These results indicate that ZFP64 promotes macrophage recruitment and M2-like polarization largely through the transcriptional activation of CSF1.
Fig. 5. S226 phosphorylation promotes ZFP64 nuclear translocation and CSF1 transcription. (A) Immunoblotting of proteins extracted from MHCC97H cells and subjected to Phos-tag™ SDS-PAGE. (B) IP was performed in MHCC97H cells and detection by silver staining. Red arrow shows the ZFP64 signal. (C) Schematic diagram showing the phosphorylation site of ZFP64 detected by LC-MS/MS (upper), and the ZFP64 amino acid sequence near S226 from various species (lower). (D) LC-MS/MS spectrum showing the phosphorylation of ZFP64S226. (E) Detection of the specificity of the ZFP64pS226-specific antibody by ELISA. (F) Immunoblotting validation of ZFP64pS226 phosphorylation in ZFP64-knockout MHCC97H cells after transfection with ZFP64WT or ZFP64S226A plasmids. (G-H) Detection of ZFP64pS226 levels in HCC tissues from TMA1 (G) and TMA2 (H) by IHC staining. (I) OS and DFS curves based on ZFP64pS226 levels. (J-K) MHCC97H cells were transfected with the indicated plasmids, immunoprecipitated using a Flag antibody, and then subjected to immunoblotting. (L) MHCC97H-sgZFP64
S266 phosphorylation promotes the K63-linked ubiquitination and nuclear translocation of ZFP64

ZFP64 is subjected to phosphorylation modifications, among which S266 is reported most frequently.11,14,15 Herein, we performed immunoblotting using phosphate-affinity SDS-PAGE (Phos-tag™), and found that ZFP64 had an additional slow-migrating signal, which was gradually weakened in a time-dependent manner after calf intestinal alkaline phosphatase (CIAP) treatment (Fig. 5A). We then employed immunoprecipitation and liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify the phosphorylation sites of ZFP64 (Fig. 5B); we detected 4 phosphorylation sites (Fig. 5C, upper). Among them, S226 was located at the second zinc finger domain of ZFP64, and the amino acid sequence near S226 (LNKHLR1HS-141-447aa) is sufficient to bind PKCα (Fig. 5D). Using confocal immunofluorescence imaging, we found that ZFP64 and PKCα were colocalized in HCC cells (Fig. 5E and S10C). Importantly, GST pull-down assays demonstrated that in vitro-translated PKCα protein was pulled down by purified GST-ZFP64 fusion protein (Fig. 6D). Furthermore, we found that the zinc finger domain of ZFP64 (Δ141-447aa) is sufficient to bind PKCα, whereas PKCα interacted with ZFP64 through its Δ336-597aa and Δ598-672aa fragments (Fig. 6E). Then we generated a computational 3D complex structural model based on the X-ray crystal structure. Docking simulation data demonstrated that multiple amino acids in Δ141-447aa of ZFP64 and in Δ336-597aa and Δ598-672aa of PKCα may be responsible for their interaction (Fig. 6F).

Next, we performed an in vitro kinase assay, and confirmed that PKCα directly phosphorylated GST-ZFP64 in vitro, whereas this was abrogated by CIAP (Fig. 6G). We also noticed that following transfection with small-interfering RNA targeting PKCα (siPKCα), ZFP64pS226 levels were reduced (Fig. 6H). In contrast, levels of ZFP64pS226 and CSF1 were increased after treatment with PMA (an activator of PKCα), while these were reversed following transfection with siPKCα or siZFP64 (Fig. 6I).

Clinically, we observed positive correlations between PRKCA or ZFP64 and CSF1 in the TCGA cohort (Fig. S10A-B). In TMA2, high levels of p-PKCα, p-ZFP64, and CSF1 occurred frequently and concomitantly, and the overactivated PKCα/ZFP64/CSF1 axis often induced an immunosuppressive microenvironment in HCC (Fig. 6J). Additionally, a retrospective evaluation of the discovery cohort revealed that patients with PD had an overactivated PKCα/ZFP64/CSF1 axis and suppressive TIME compared to those with SD and PR (Fig. 6K-L). A highly activated PKCα/ZFP64/CSF1 axis, especially of p-ZFP64, was positively correlated with poor anti-PD1 treatment efficacy (Fig. 6M-N). These results indicate that the identified PKCα/ZFP64/CSF1 axis is positively correlated with poor efficacy of anti-PD1 treatment.

Gö6976 improves the TIME and anti-PD1 efficacy by targeting the PKCα/ZFP64/CSF1 axis

We further introduced Gö6976, an inhibitor of PKCα. The cell viability of MHCC97H was attenuated after Gö6976 treatment, exhibiting an IC50 of 25.41 μM (Fig. S11A). Importantly, we found that Gö6976 inhibited the activation of the PKCα/ZFP64/CSF1 axis in a dose- and time-dependent manner, and decreased the membrane-localized PKCα and nuclear-localized ZFP64 (Fig. 7A-C).
Fig. 6. The identified PKCα/ZFP64/CSF1 axis induces a suppressive TIME. (A) ZFP64-interacting proteins were identified using mass spectrometry. Venn diagram was used to identify the overlapping proteins in indicated cells. (B) Colocalization of ZFP64 and PKCα in MHCC97H cells detected by IF analysis. (C) Co-IP of endogenous ZFP64 and PKCα in MHCC97H cells after transfection with the indicated plasmids. (D) GST pull-down assay showing the direct interaction between ZFP64 and PKCα. (E) Western blot analysis of co-IP experiment. (F) GST pull-down assay showing the direct interaction between ZFP64 and PKCα. (G) Expression of ZFP64 and PKCα in MHCC97H cells detected by IF analysis. (H) Western blot analysis of co-IP experiment. (I) Western blot analysis of GST pull-down assay. (J) Western blot analysis of co-IP experiment. (K) Western blot analysis of GST pull-down assay. (L) Western blot analysis of co-IP experiment.
Using patient-derived xenograft and orthotopic xenograft tumor models, we showed that tumor weights in the G6976-treated group were significantly lower than those in the vehicle group (Fig. 7D and 7F). Decreased p-PKCα, p-ZFP64, CSF1, nuclear-localized ZFP64 levels, decreased F4/80+ and CD206+ cells, and increased CD4+, CD8+, and apoptotic cells were shown in the G6976-treated group compared with those in the vehicle group (Fig. 7E, 7G–H, and S11B–D). However, G6976-induced tumor inhibition and immune improvement were reversed by intraperitoneal administration of recombinant mouse CSF1 (Fig. S12A–B).

We then speculated that blocking the PKCα/ZFP64/CSF1 axis might improve anti-PD1 efficacy. To verify this, G6976 and another inhibitor, BLZ945 (targeting CSF1R), were introduced to block the PKCα/ZFP64/CSF1 axis. We found that in Hepa1-6-EV groups, G6976, BLZ945, anti-PD1, G6976 or BLZ945 combined with anti-PD1 inhibited tumor growth; while in Hepa1-6-ZFP64 groups, anti-PD1 could not inhibit, G6976 or BLZ945 partially inhibited, and G6976 or BLZ945 combined with anti-PD1 significantly inhibited tumor growth (Fig. 7I–N). Accordingly, we found that the combinatorial therapy evidently improved the TIME, as seen by the increased number of CD4+ and CD8+ cells and the decreased number of F4/80+ and CD206+ cells, especially in the ZFP64 overexpression group (Fig. S13A–D). We did not observe changes in body weights or significant side effects in these mice (Fig. S13E). Additionally, we developed an orthotopic xenograft tumor model and recorded the survival time of the mice, which further confirmed the aforementioned results (Fig. S13F–I).

Studies have reported that instead of sorafenib, lenvatinib partially inhibited tumor progression by reshaping the TIME. In particular, lenvatinib was reported to decrease PKC expression, while sorafenib did not. Herein, we found that only lenvatinib inhibited the PKCα/ZFP64/CSF1 axis, and this inhibition disappeared in siPKCα cells (Fig. S14A–C). Using in vivo assays, we observed that both lenvatinib and sorafenib inhibited tumor progression, but only lenvatinib specifically improved the TIME (Fig. S14D–E). Additionally, lenvatinib and anti-PD1 exerted synergistic antitumor effects and significantly prolonged the survival time of tumor-bearing mice (Fig. S14F–H). A combination of G6976 or lenvatinib with anti-PD1 showed no difference in therapeutic efficacy in ZFP64-overexpressing xenograft tumors (Fig. S14I–J). These findings indicate that lenvatinib reshapes the TIME partially through the identified PKCα/ZFP64/CSF1 axis, and that in treating ZFP64-overexpressing HCC, G6976 is as effective as lenvatinib in the anti-PD1 combinatorial scheme.

Discussion

Despite its successful application in multiple solid tumors, anti-PD1 therapy has benefited only a fraction of patients with HCC. In this study, we demonstrated that elevated ZFP64 was closely correlated with the anti-PD1 tolerance and the dismal prognosis of patients with HCC. Specifically, we found that PKCα phosphorylates ZFP64 at S226 and promotes its nuclear translocation, thereby transcriptionally activating CSF1. This process further induces the recruitment and M2-like polarization of macrophages, inducing immune escape and anti-PD1 tolerance. Clinically, patients with an activated PKCα/ZFP64/CSF1 axis frequently exhibited anti-PD1 resistance.

Multiple studies suggest that ZFP64 may accelerate tumor progression, but the exact function remains unclear. We confirmed that ZFP64 promoted tumor progression and reflected poor prognosis in patients with HCC. Remarkably, we first demonstrated that high ZFP64 levels induced an immunosuppressive microenvironment. CSF1 is a central cytokine that regulates monocyte/macrophage differentiation, survival, and proliferation and promotes their recruitment and polarization. We confirmed that ZFP64 transcriptionally regulated CSF1 expression by directly binding to its promoter region, and that secreted CSF1 strongly induced M2 polarization of recruited macrophages, thereby inducing an inhibitory TIME and promoting tumor progression. M2 macrophages play crucial roles in immune escape and ICB therapy resistance. A recent study has demonstrated that patients with high levels of M2 infiltration tended to be resistant to anti-PD1 treatment. Additionally, CSF1 also promotes tumor progression by activating multiple signals through the receptor CSF1R expressed by tumor cells. Taken together, we demonstrate that the ZFP64/CSF1 axis is a powerful driver of tumor progression and anti-PD1 resistance in HCC.

Herein, we discovered that PKCα, an important protein kinase, directly complexed with ZFP64 and phosphorylated it at S226, promoting its nuclear translocation and the transcriptional activation of target genes. Clinically, high levels of p-PKCα, p-ZFP64, and CSF1 occurred frequently and concomitantly, and the overactivated PKCα/ZFP64/CSF1 axis often induced an immunosuppressive microenvironment. We also observed positive correlations between constituents of the PKCα/ZFP64/CSF1 axis and anti-PD1 efficacy, though most of these correlations were not statistically different, probably due to our limited sample size. We further introduced G6976, a classic inhibitor of PKCα, which has been previously shown to inhibit the progression of several tumors. For example, G6976 treatment 2 days after tumor implantation prevented 92% of tumor formation, whereas treatment 7 weeks after implantation caused complete regression of

ZFP64 and PKCα, and Coomassie blue staining showing the levels of GST-ZFP64 fusion protein. (E) Co-IP was performed in MHCC97H cells after transfection with indicated plasmids. (F) The crucial amino acids for the interaction between ZFP64 and PKCα were predicted using 3D structures. (G) Detection of ZFP64 phosphorylation by an in vitro kinase assay. (H) Immunoblotting detected ZFP64pS226 levels after transfection with indicated plasmids. (I) Immunoblotting showing protein levels in MHCC97H cells after transfection with the indicated plasmids. (J) IHC and miF of indicated antibodies were performed in TM2A. (K) IHC was performed in the training cohort. (L) miF analyses were performed in the training cohort, and representative images are presented. Green arrows (CD8+ cells), yellow arrows (CD4+ cells), white arrows (CD68+CD206+ cells). (M) Patients were categorized into high and low groups according to p-PKCα, PKC, p-ZFP64, ZFP64, and CSF1 levels; a correlation analysis of their levels and the efficacy of anti-PD1 treatment was performed. (N) Patients were categorized into high and low groups according to the p-ZFP64 level in tumor tissues; a fold line diagram was used to detect the changes in tumor size in patients with HCC after anti-PD1 treatment. HCC, hepatocellular carcinoma; IP, immunofluorescence; IHC, immunohistochemistry; miF, multiplex immunofluorescence; TIME, tumor immune microenvironment. (This figure appears in color on the web.)
Fig. 7. Gö6976 improves the TIME and enhances anti-PD1 efficacy by inhibiting the PKCα/ZFP64/CSF1 axis. (A) Immunoblotting was performed in MHCC97H cells. (B) Immunoblotting of nuclear and membrane extracts (upper panel) or nuclear and cytoplasmic extracts (lower panel) of MHCC97H cells. (C) IF images of MHCC97H cells with indicated treatment. (D) NSG mice bearing PDX tumors were administered Gö6976 or vehicle, and tumor weights were measured at the endpoint. (E) IHC was performed in Gö6976- or vehicle-treated PDX tumor tissues. (F) Bioluminescence images of orthotopic HCC tumors at the endpoint. (G-H) Hepa1-6-ZFP64 cells were subcutaneously injected into C57BL/6 mice. When tumors reached 80–130 mm³, mice were treated with anti-PD1, Gö6976, BLZ945, or a combination. Tumor volumes and weights were measured at indicated times. (I–J) Hepa1-6-EV and Hepa1-6-ZFP64 cells were subcutaneously injected into C57BL/6 mice. When tumors reached 80–130 mm³, mice were treated with anti-PD1, Gö6976, BLZ945, or a combination. Tumor volumes and weights were measured at indicated times. EV, empty vector; HCC, hepatocellular carcinoma; IF, immunofluorescence; IHC, immunohistochemistry; PDX, patient-derived xenograft; TIME, tumor immune microenvironment. (This figure appears in color on the web.)
established tumors.10 We revealed that Gö6976 suppressed tumor progression and altered the TIME via the PKC\(\varepsilon/ZFP64/CSF1\) axis in HCC. Importantly, we presented extensive evidence that the combined treatment of Gö6976 with anti-PD1 could synergistically improve the survival of tumor-bearing mice, especially in those with ZFP64-overexpressing HCC.

In summary, we determined that the PKC\(\varepsilon/ZFP64/CSF1\) axis favors an inhibitory TIME by promoting M2-like polarization in recruited macrophages, and Gö6976 reshapes the tumor microenvironment and reverses anti-PD1 resistance. Our study reveals a promising therapeutic regimen for combination therapy with anti-PD1.

Abbreviations

CSF1, macrophage colony-stimulating factor; ZFP64, zinc finger protein 64; ChIP, chromatin immunoprecipitation; CR, complete response; CyTOF, mass cytometry by time of flight; DEGs, differentially expressed genes; EV, empty vector; FCM, flow cytometry; HCC, hepatocellular carcinoma; ICB, immune checkpoint blockade; IC-BMS/M5, liquid chromatography tandem mass spectrometry; MRI, magnetic resonance imaging; OS, overall survival; PD, progressive disease; PD-1, programmed cell death 1; PD-L1, programmed cell death ligand 1; PKC\(\varepsilon\), protein kinase C alpha; PMA, phorbol-12-myristate-13-acetate; PR, partial response; SD, stable disease; TAMs, tumor-associated macrophages; TCGA, The Cancer Genome Atlas; TIME, tumor immune microenvironment; t-SNE, t-distributed stochastic neighbor embedding; ZFP64, zinc finger protein 64.

Financial support

This work was funded by the National Natural Science Foundation of China (81972559, 81672825, and 81602513), the Shanghai Municipal Natural Science Foundation (21ZR1412200), the Clinical Research Plan of SHDC (SHDC2020CR2067B), the Chen Guang Program of Shanghai Municipal Education Commission (CJB), and the Young Elite Scientists Sponsorship Program by CAST (2019QNRC001).

Conflicts of interest

The authors have declared no conflict of interest.

Please refer to the accompanying ICMJE disclosure forms for further details.

Authors' contributions

JF, AK, JC designed and conceived this project. CW, MZ and PZ performed experiments, analyzed data, and wrote the manuscript. JW, RP, XY, CG, JW, SY, YZ, ZT analyzed and interpreted data. XY, ZH, XC generated reagents. CW, MZ, PZ and XH analyzed the data and collected tumor samples. JF, AK, JC QC, JZ supervised the study. All authors contributed to and approved the manuscript.

Data availability statement

The data used to support the findings of this study are included and available within the article.

Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jhep.2022.02.019.

References

Author names in bold designate shared co-first authorship.

Research Article

