Highlights
- •Individualised 10-year risk of cirrhosis-related morbidity can be predicted in the community.
- •The APRI score exhibited the best discriminative ability (C-index >0.80).
- •10-year cumulative incidence was 14.8% for individuals with APRI in the 99th percentile.
- •Genetic risk scores were outperformed by more accessible alternatives.
- •Genetic risk scores add little new prognostic information beyond what is already captured by APRI and FIB-4.
Background & Aims
Methods
Results
Conclusions
Lay summary
Graphical abstract

Keywords
Introduction
- Williams R.
- Aspinall R.
- Bellis M.
- Camps-Walsh G.
- Cramp M.
- Dhawan A.
- et al.
Materials and methods
Stage 1 (identifying candidate risk scores)
Stage 2 (evaluating risk score performance)
Study population
- 1)Alcohol consumption exceeding 14 units/week (the recommended threshold for safe drinking in UK[16]).
- 2)Abdominal obesity (waist-hip ratio >1.0 if male, and >0.9 if female).
- 3)General obesity (BMI >30).
- 4)Diagnosis of type 2 diabetes mellitus (T2DM).
- a.Developed the primary outcome event prior to UKB interview (see following paragraph for definition);
- b.Missing data for ≥1 risk score identified in our systematic review;
- c.Missing genetic data for one or more of the 20 single nucleotide polymorphisms (see later paragraph for further information).
Primary outcome event
Calculating risk score values
Fry D, Almond R, Moffat S, Gordon M, Singh P. UK Biobank project. Companion document to accompany serum biomarker data. Version 1.0. Date 11/3/2019. https://biobank.ndph.ox.ac.uk/showcase/ukb/docs/serum_biochemistry.pdf. Accessed January 2022.
Sheard SM, Nicholls R, Froggatt J. UK Biobank Haematology Data Companion Document. Date: 24/10/17. https://biobank.ndph.ox.ac.uk/showcase/ukb/docs/haematology.pdf. Accessed January 2022.
Prognostic factor (UKB field ID) | Risk score | Total | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AAR | ALBI | ALBI-FIB-4 | APRI | BARD | CBR | CRPA | CirCom | Cirrus | DOHA | FIB-4 | FLI | ML | NAR | NFS | NL | PALBI | PWC | vdMM | WHR | ||
Platelet count (30080) | X | X | X | X | X | X | X | X | X | 9 | |||||||||||
Aspartate aminotransferase (30650) | X | X | X | X | X | X | X | X | 8 | ||||||||||||
Albumin (30600) | X | X | X | X | X | X | X | X | 8 | ||||||||||||
Alanine aminotransferase (30620) | X | X | X | X | X | X | 6 | ||||||||||||||
Bilirubin (30840) | X | X | X | X | X | 5 | |||||||||||||||
Age (21022) | X | X | X | X | 4 | ||||||||||||||||
BMI (21001) | X | X | X | 3 | |||||||||||||||||
Waist circumference (48) | X | X | 2 | ||||||||||||||||||
Type 2 diabetes mellitus (various fields∗) | X | X | 2 | ||||||||||||||||||
Lymphocyte count (30120) | X | X | 2 | ||||||||||||||||||
Neutrophil count (30140) | X | X | 2 | ||||||||||||||||||
Gamma glutamyl transferase (30730) | X | 1 | |||||||||||||||||||
Creatinine (30700) | X | 1 | |||||||||||||||||||
Mean corpuscular volume (30040) | X | 1 | |||||||||||||||||||
Sodium (30530) | X | 1 | |||||||||||||||||||
Total protein (30860) | X | 1 | |||||||||||||||||||
Triglycerides (23407) | X | 1 | |||||||||||||||||||
C-reactive protein (30710) | X | 1 | |||||||||||||||||||
Prior hospital admission data (various fields∗) | X | 1 | |||||||||||||||||||
Cystatin (30720) | X | 1 | |||||||||||||||||||
Monocyte count (30130) | X | 1 | |||||||||||||||||||
Leukocyte count (30000) | X | 1 | |||||||||||||||||||
Hip circumference (49) | X | 1 | |||||||||||||||||||
Sex (31) | X | 1 |
Statistical analyses
Definition of the ‘at risk’ period
Competing risk perspective
Risk score discrimination
Improving discrimination by integrating genetic data
Relationship between risk score value and 10-year complication risk
Results
Stage 1 (identification of candidate risk scores):
Stage 2 (derivation and characteristics of study population):
Primary outcome event
Characteristics (baseline) | Participants, n (%) | Cirrhosis complication event (primary outcome) | Non-cirrhosis mortality (competing risk event) | ||
---|---|---|---|---|---|
Events, n (%) | 10-year cumulative incidence, % (95% CI) | Events, n (%) | 10-year cumulative incidence, % (95% CI) | ||
Age group, years | |||||
<50 | 41,943 (21.2) | 131 (11.8) | 0.32 (0.27-0.38) | 637 (6.3) | 1.56 (1.44-1.68) |
50-59 | 67,011 (33.9) | 351 (31.6) | 0.54 (0.49-0.60) | 2,300 (22.7) | 3.53 (3.39-3.68) |
≥60 | 88,555 (44.8) | 628 (56.6) | 0.73 (0.67-0.78) | 7,218 (71.1) | 8.37 (8.19-8.56) |
Sex | |||||
Female | 88,677 (44.9) | 316 (28.5) | 0.37 (0.33-0.41) | 3,360 (33.1) | 3.90 (3.78-4.03) |
Male | 108,832 (55.1) | 794 (71.5) | 0.75 (0.70-0.80) | 6,795 (66.9) | 6.41 (6.27-6.56) |
Ethnicity | |||||
White | 170,242 (86.2) | 942 (84.9) | 0.63 (0.54-0.73) | 1,277 (12.6) | 4.80 (4.54-5.06) |
Non-white | 27,267 (13.8) | 168 (15.1) | 0.57 (0.53-0.61) | 8,878 (87.4) | 5.37 (5.26-5.48) |
Townsend deprivation quintile | |||||
Q1 (least deprived) | 40,204 (20.4) | 150 (13.5) | 0.39 (0.33-0.45) | 1,727 (17.0) | 4.44 (4.24-4.65) |
Q2 | 40,022 (20.3) | 159 (14.3) | 0.41 (0.35-0.48) | 1,842 (18.1) | 4.73 (4.52-4.94) |
Q3 | 39,885 (20.2) | 202 (18.2) | 0.52 (0.45-0.59) | 1,879 (18.5) | 4.83 (4.62-5.05) |
Q4 | 39,228 (19.9) | 252 (22.7) | 0.66 (0.58-0.74) | 2,031 (20.0) | 5.32 (5.10-5.55) |
Q5 (most deprived) | 37,923 (19.2) | 347 (31.3) | 0.94 (0.85-1.04) | 2,663 (26.2) | 7.21 (6.95-7.48) |
Missing | 247 (0.1) | 0 (0.0) | \ | 13 (0.1) | \ |
Alcohol intake, units/week | |||||
<15 | 76,400 (38.7) | 450 (40.5) | 0.60 (0.55-0.66) | 4,433 (43.7) | 5.97 (5.80-6.15) |
15-49 | 108,887 (55.1) | 423 (38.1) | 0.40 (0.36-0.44) | 4,844 (47.7) | 4.57 (4.45-4.70) |
50+ | 10,486 (5.3) | 205 (18.5) | 2.00 (1.74-2.29) | 742 (7.3) | 7.26 (6.77-7.77) |
Missing | 1,736 (0.9) | 32 (2.9) | 1.89 (1.32-2.62) | 136 (1.3) | 8.02 (6.79-9.37) |
Type 2 diabetes | |||||
No | 182,445 (92.4) | 863 (77.8) | 0.49 (0.46-0.52) | 8,692 (85.6) | 4.90 (4.80-5.00) |
Yes | 15,064 (7.6) | 247 (22.3) | 1.68 (1.48-1.89) | 1,463 (14.4) | 9.99 (9.51-10.48) |
BMI category, kg/m2 | |||||
<30 | 109,049 (55.2) | 474 (42.7) | 0.45 (0.41-0.49) | 5,336 (52.6) | 5.02 (4.89-5.15) |
≥30 | 88,460 (44.8) | 636 (57.3) | 0.74 (0.69-0.80) | 4,819 (47.5) | 5.62 (5.47-5.78) |
All participants | 197,509 (100.0) | 1,110 (100.0) | 0.58 (0.54-0.61) | 10,155 (100.0) | 5.29 (5.19-5.39) |
Risk score discrimination

Improving discrimination with genetic data
SNP | Chr:Basepair position | Minor allele | Ref allele | Missing proportion | MAF | Nearest gene | Position | Phenotype |
---|---|---|---|---|---|---|---|---|
rs12904 | 1:155106697 | A | G | 0.000 | 0.411 | EFNA1 | UTR3 | Fibrosis/cirrhosis |
rs2642438 | 1:220970028 | A | G | 0.000 | 0.291 | MARC1. | Exonic | Fibrosis/cirrhosis |
rs708118 | 1:228201801 | C | T | 0.013 | 0.389 | WNT3A | Intronic | HCC |
rs5743836 | 3:52260782 | G | A | 0.000 | 0.162 | TLR9(dist = 603) | Upstream | Hepatic encephalopathy |
rs72613567 | 4:88231392 | TA | T | 0.000 | 0.270 | HSD17B13 | Intronic | Fibrosis/cirrhosis |
rs2562582 | 5:36605360 | C | T | 0.050 | 0.179 | SLC1A3(dist = 1097) | Intergenic | Hepatic encephalopathy |
rs888655 | 5:72917439 | A | G | 0.003 | 0.273 | ARHGEF28(dist = 4544) | Intergenic | Fibrosis/cirrhosis |
rs11134977 | 5:175904141 | C | T | 0.014 | 0.448 | FAF2 | Intronic | Fibrosis/cirrhosis |
rs9398804 | 6:126703390 | A | T | 0.039 | 0.445 | CENPW | Intronic | Fibrosis/cirrhosis |
rs7029757 | 9:132566666 | A | G | 0.010 | 0.090 | TOR1B | Intronic | Fibrosis/cirrhosis |
rs2792751 | 10:113940329 | T | C | 0.000 | 0.269 | GPAM | Exonic | Fibrosis/cirrhosis |
rs1799992 | 11:118957246 | C | T | 0.014 | 0.399 | HMBS | Intronic | Fibrosis/cirrhosis |
rs28929474 | 14:94844947 | T | C | 0.000 | 0.019 | SERPINA1 | Exonic | Fibrosis/cirrhosis |
rs58542926 | 19:19379549 | T | C | 0.000 | 0.074 | TM6SF2 | Exonic | HCC; fibrosis/cirrhosis |
rs187429064 | 19:19380513 | G | A | 0.009 | 0.011 | TM6SF2 | Exonic | Fibrosis/cirrhosis |
rs15052 | 19:41813375 | C | T | 0.005 | 0.170 | HNRNPUL1 | UTR3 | Fibrosis/cirrhosis |
rs429358 | 19:45411941 | C | T | 0.000 | 0.154 | APOE | Exonic | HCC; fibrosis/cirrhosis |
rs313853 | 19:47287939 | C | T | 0.024 | 0.339 | SLC1A5 | UTR5 | Hepatic encephalopathy |
rs601338 | 19:49206674 | G | A | 0.000 | 0.499 | FUT2 | Exonic | Hepatic encephalopathy |
rs641738 | 19:54676763 | T | C | 0.009 | 0.437 | TMC4 | Exonic | Fibrosis/cirrhosis |
rs1883711 | 20:39179822 | C | G | 0.009 | 0.028 | MAFB(dist = 134666) | Intergenic | Fibrosis/cirrhosis |
rs738409 | 22:44324727 | G | C | 0.000 | 0.216 | PNPLA3 | Exonic | HCC; fibrosis/cirrhosis |


The relationship between risk score value and 10-year complication risk

Discussion
- Williams R.
- Aspinall R.
- Bellis M.
- Camps-Walsh G.
- Cramp M.
- Dhawan A.
- et al.
National Institute for Health and Care Excellence (NICE). NICE Guideline. Non-alcoholic fatty liver disease (NAFLD): assessment and management. Available at: https://www.nice.org.uk/guidance/ng49. Accessed October 2021..
National Institute for Health and Care Excellence (NICE). NICE Guideline. Non-alcoholic fatty liver disease (NAFLD): assessment and management. Available at: https://www.nice.org.uk/guidance/ng49. Accessed October 2021..
National Institute for Health and Care Excellence (NICE). NICE Guideline. Non-alcoholic fatty liver disease (NAFLD): assessment and management. Available at: https://www.nice.org.uk/guidance/ng49. Accessed October 2021..
UK Biobank. Biomarker assay quality procedures: approaches used to minimise systematic and random errors (and the wider epidemiological implications). Version 1.2. Available at: https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/biomarker_issues.pdf. Accessed: December 2021.
Abbreviations
Financial support
Authors’ contributions
Data availability statement
Conflict of interest
Acknowledgements
Supplementary data
- Multimedia component 1
- Multimedia component 2
- Multimedia component 3
- Multimedia component 4
References
- The global, regional and national burden of cirrhosis by cause in 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017.Lancet Gastroenterol Hepatol. 2020; 5: 245-266
- Late diagnosis of chronic liver disease in a community cohort (UK biobank): determinants and impact on subsequent survival.Public Helath. 2020; 187: 165-171
- Addressing liver disease in the UK: a blueprint for attaining excellence in health care and reducing premature mortality from lifestyle issues of excess consumption of alcohol, obesity and viral hepatitis.Lancet. 2014; 384: 1953-1997
- The EASL-Lancet Liver Commission: protecting he next generation of Europeans against liver disease complications and premature mortality.Lancet. 2022; 399: 61-116
- Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: prospective cohort study.BMJ. 2017; 357: J2099
- Prognostic accuracy of FIB-4 NAFLD fibrosis score and APRI for NAFLD-related events: a systematic review.Liver Int. 2021; 41: 261-270
- Long-term outcomes and predictive ability of non-invasive scoring systems in patients with non-alcoholic fatty liver disease.J Hepatol. 2021; 75: 786-794
- The genetics of alcohol dependence and alcohol-related liver disease.J Hepatol. 2017; 66: 195-211
- A genetic risk score and diabetes predicts development of alcohol-related cirrhosis in drinkers.J Hepatol. 2022; 76: 275-282
- Non-invasive stratification of hepatocellular carcinoma in non-alcoholic fatty liver using polygenic risk scores.J Hepatol. 2021; 74: 775-782
- UK Biobank: an open access resource for identifying the causes of a wide range of complex disease of middle and old age.PLoS Med. 2015; 12: E1001779
- Direct targeting of risk factors significantly increases the detection of liver cirrhosis in primary care: a cross-sectional diagnostic study utilizing transient elastography.BMJ Open. 2015; 5e007516
- Local care and treatment of liver disease (LOCATE) – a cluster-randomized feasibility study to discover, access and manage early liver disease in primary care.PLoS One. 2018; 13e0208798
- High prevalence of liver fibrosis among Europeans adults with unknown liver disease: a population-based study.Clin Gastroenterol Hepatol. 2018; 16: 1138-1145
- High liver stiffness values by transient elastography related to metabolic syndrome and harmful alcohol use in a large Spanish cohort.United Eur Gastroenterol J. 2021; 9: 892-903
- UK Chief Medical Officers’ alcohol guidelines review. Summary of the proposed new guidelines.January 2016 (Available at:) (Accessed June 2021)
- Causes of death in people with liver cirrhosis in England compared with the general population: a population-based cohort study.Am J Gastroenterol. 2015; 110: 1149-1158
Fry D, Almond R, Moffat S, Gordon M, Singh P. UK Biobank project. Companion document to accompany serum biomarker data. Version 1.0. Date 11/3/2019. https://biobank.ndph.ox.ac.uk/showcase/ukb/docs/serum_biochemistry.pdf. Accessed January 2022.
Sheard SM, Nicholls R, Froggatt J. UK Biobank Haematology Data Companion Document. Date: 24/10/17. https://biobank.ndph.ox.ac.uk/showcase/ukb/docs/haematology.pdf. Accessed January 2022.
- The clinical course of cirrhosis: the importance of multistate models and competing risks analysis.Hepatology. 2015; 62 (2922-302)
- Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): explanation and elaboration.Ann Intern Med. 2015; 162: W1-73
- Prognostic models with competing risks. Methods and application to coronary risk prediction.Epidemiology. 2009; 20: 555-561
- Under reliance on I2 in assessing heterogeneity may mislead.BMC Med Res Methodol. 2008; 8: 79
- The UK Biobank resource with deep phenotyping and genomic data.Nature. 2018; 562: 203-209
- The use of fractional polynomials to model continuous risk variables in epidemiology.Int J Epidemiol. 1999; 28: 964-974
- Regression modelling strategies.2001 (Chapter 9. ISBN 0172-7397)
- EASL Clinical Practice Guidelines on non-invasive tests for evaluation of liver disease severity and prognosis- 2021 update.J Hepatol. 2021; 75: 659-689
- Can routine blood tests be modelled to detect advanced liver disease in the community: model derivation and validation using UK primary and secondary care data.BMJ Open. 2021; 11e044952
- Guidelines on the management of abnormal liver blood tests.Gut. 2018; 67: 6-19
National Institute for Health and Care Excellence (NICE). NICE Guideline. Non-alcoholic fatty liver disease (NAFLD): assessment and management. Available at: https://www.nice.org.uk/guidance/ng49. Accessed October 2021..
- A polygenic risk score to refine risk stratification and prediction for severe liver disease by clinical fibrosis scores.Clin Gastroenterol Hepatol. 2021; (In press)
- Variability in the analysis of a single neuroimaging dataset by many teams.Nature. 2020; 582: 84-88
UK Biobank. Biomarker assay quality procedures: approaches used to minimise systematic and random errors (and the wider epidemiological implications). Version 1.2. Available at: https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/biomarker_issues.pdf. Accessed: December 2021.
- Comparison of sociodemographic and health-related characteristics of UK biobank participants with those of the general population.Am J Epidemiol. 2017; 186: 1026-1034
- Rare pathogenic variants predispose to hepatocellular carcinoma in non-alcoholic fatty liver disease.Sci Rep. 2019; 9: 3682
Article info
Publication history
Footnotes
Author names in bold designate shared co-first authorship
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy