Advertisement

Mechanotransduction-induced glycolysis epigenetically regulates a CXCL1-dominant angiocrine signaling program in liver sinusoidal endothelial cells in vitro and in vivo

Published:April 11, 2022DOI:https://doi.org/10.1016/j.jhep.2022.03.029

      Highlights

      • Increased stiffness leads to recruitment of glycolytic enzymes to focal adhesions in LSECs, paralleling an increase in glycolysis.
      • Inhibition of glycolysis blocks a stiffness-induced CXCL1-dominant angiocrine program.
      • Glycolysis promotes CXCL1 expression through nuclear pore changes and increases in NF-kB translocation.
      • LSEC-selective deletion of glycolytic enzymes results in attenuation of portal hypertension in vivo.
      • Treatment with the glycolysis inhibitor 3PO attenuates early liver fibrosis in vivo.

      Background & Aims

      Liver sinusoidal endothelial cells (LSECs) are ideally situated to sense stiffness and generate angiocrine programs that potentially regulate liver fibrosis and portal hypertension. We explored how specific focal adhesion (FA) proteins parlay LSEC mechanotransduction into stiffness-induced angiocrine signaling in vitro and in vivo.

      Methods

      Primary human and murine LSECs were placed on gels with incremental stiffness (0.2 kPa vs. 32 kPa). Cell response was studied by FA isolation, actin polymerization assay, RNA-sequencing and electron microscopy. Glycolysis was assessed using radioactive tracers. Epigenetic regulation of stiffness-induced genes was analyzed by chromatin-immunoprecipitation (ChIP) analysis of histone activation marks, ChIP sequencing and circularized chromosome conformation capture (4C). Mice with LSEC-selective deletion of glycolytic enzymes (Hk2fl/fl/Cdh5cre-ERT2) or treatment with the glycolysis inhibitor 3PO were studied in portal hypertension (partial ligation of the inferior vena cava, pIVCL) and early liver fibrosis (CCl4) models.

      Results

      Glycolytic enzymes, particularly phosphofructokinase 1 isoform P (PFKP), are enriched in isolated FAs from LSECs on gels with incremental stiffness. Stiffness resulted in PFKP recruitment to FAs, which paralleled an increase in glycolysis. Glycolysis was associated with expansion of actin dynamics and was attenuated by inhibition of integrin β1. Inhibition of glycolysis attenuated a stiffness-induced CXCL1-dominant angiocrine program. Mechanistically, glycolysis promoted CXCL1 expression through nuclear pore changes and increases in NF-kB translocation. Biochemically, this CXCL1 expression was mediated through spatial re-organization of nuclear chromatin resulting in formation of super-enhancers, histone acetylation and NF-kB interaction with the CXCL1 promoter. Hk2fl/fl/Cdh5cre-ERT2 mice showed attenuated neutrophil infiltration and portal hypertension after pIVCL. 3PO treatment attenuated liver fibrosis in a CCl4 model.

      Conclusion

      Glycolytic enzymes are involved in stiffness-induced angiocrine signaling in LSECs and represent druggable targets in early liver disease.

      Lay summary

      Treatment options for liver fibrosis and portal hypertension still represent an unmet need. Herein, we uncovered a novel role for glycolytic enzymes in promoting stiffness-induced angiocrine signaling, which resulted in inflammation, fibrosis and portal hypertension. This work has revealed new targets that could be used in the prevention and treatment of liver fibrosis and portal hypertension.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Hepatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Greuter T.
        • Shah V.H.
        Hepatic sinusoids in liver injury, inflammation, and fibrosis: new pathophysiological insights.
        J Gastroenterol. 2016; 51: 511-519
        • Dauphinee S.M.
        • Karsan A.
        Lipopolysaccharide signaling in endothelial cells.
        Lab Invest. 2006; 86: 9-22
        • Schrage A.
        • Wechsung K.
        • Neumann K.
        • Schumann M.
        • Schulzke J.D.
        • Engelhardt B.
        • et al.
        Enhanced T cell transmigration across the murine liver sinusoidal endothelium is mediated by transcytosis and surface presentation of chemokines.
        Hepatology. 2008; 48: 1262-1272
        • Kostallari E.
        • Shah V.H.
        Angiocrine signaling in the hepatic sinusoids in health and disease.
        Am J Physiol Gastrointest Liver Physiol. 2016; 311: G246-G251
        • Hilscher M.B.
        • Sehrawat T.
        • Arab J.P.
        • Zeng Z.
        • Gao J.
        • Liu M.
        • et al.
        Mechanical stretch increases expression of CXCL1 in liver sinusoidal endothelial cells to recruit neutrophils, generate sinusoidal microthombi, and promote portal hypertension.
        Gastroenterology. 2019; 157: 193-209.e9
        • Wells R.G.
        Tissue mechanics and fibrosis.
        Biochim Biophys Acta. 2013; 1832: 884-890
        • Duscher D.
        • Maan Z.N.
        • Wong V.W.
        • Rennert R.C.
        • Januszyk M.
        • Rodrigues M.
        • et al.
        Mechanotransduction and fibrosis.
        J Biomech. 2014; 47: 1997-2005
        • Humphrey J.D.
        • Dufresne E.R.
        • Schwartz M.A.
        Mechanotransduction and extracellular matrix homeostasis.
        Nat Rev Mol Cell Biol. 2014; 15: 802-812
        • Ross T.D.
        • Coon B.G.
        • Yun S.
        • Baeyens N.
        • Tanaka K.
        • Ouyang M.
        • et al.
        Integrins in mechanotransduction.
        Curr Opin Cell Biol. 2013; 25: 613-618
        • del Rio A.
        • Perez-Jimenez R.
        • Liu R.
        • Roca-Cusachs P.
        • Fernandez J.M.
        • Sheetz M.P.
        Stretching single talin rod molecules activates vinculin binding.
        Science. 2009; 323: 638-641
        • Zhang X.
        • Cook P.C.
        • Zindy E.
        • Williams C.J.
        • Jowitt T.A.
        • Streuli C.H.
        • et al.
        Integrin α4β1 controls G9a activity that regulates epigenetic changes and nuclear properties required for lymphocyte migration.
        Nucleic Acids Res. 2016; 44: 3031-3044
        • Atherton P.
        • Stutchbury B.
        • Jethwa D.
        • Ballestrem C.
        Mechanosensitive components of integrin adhesions: role of vinculin.
        Exp Cell Res. 2016; 343: 21-27
        • De Bock K.
        • Georgiadou M.
        • Schoors S.
        • Kuchnio A.
        • Wong B.W.
        • Cantelmo A.R.
        • et al.
        Role of PFKFB3-driven glycolysis in vessel sprouting.
        Cell. 2013; 154: 651-663
        • Yu P.
        • Wilhelm K.
        • Dubrac A.
        • Tung J.K.
        • Alves T.C.
        • Fang J.S.
        • et al.
        FGF-dependent metabolic control of vascular development.
        Nature. 2017; 545: 224-228
        • Elosegui-Artola A.
        • Andreu I.
        • Beedle A.E.M.
        • Lezamiz A.
        • Uroz M.
        • Kosmalska A.J.
        • et al.
        Force triggers YAP nuclear entry by regulating transport across nuclear pores.
        Cell. 2017; 171: 1397-1410.e14
        • Baldwin A.S.
        The NF-kappa B and I kappa B proteins: new discoveries and insights.
        Annu Rev Immunol. 1996; 14: 649-683
        • Tak P.P.
        • Firestein G.S.
        NF-kappaB: a key role in inflammatory diseases.
        J Clin Invest. 2001; 107: 7-11
        • Young S.R.
        • Gerard-O'Riley R.
        • Harrington M.
        • Pavalko F.M.
        Activation of NF-kappaB by fluid shear stress, but not TNF-alpha, requires focal adhesion kinase in osteoblasts.
        Bone. 2010; 47: 74-82
        • Stein C.
        • Bardet A.F.
        • Roma G.
        • Bergling S.
        • Clay I.
        • Ruchti A.
        • et al.
        YAP1 exerts its transcriptional control via TEAD-mediated activation of enhancers.
        Plos Genet. 2015; 11e1005465
        • Dou C.
        • Liu Z.
        • Tu K.
        • Zhang H.
        • Chen C.
        • Yaqoob U.
        • et al.
        P300 acetyltransferase mediates stiffness-induced activation of hepatic stellate cells into tumor-promoting myofibroblasts.
        Gastroenterology. 2018; 154: 2209-2221.e14
        • Zhao Z.
        • Tavoosidana G.
        • Sjölinder M.
        • Göndör A.
        • Mariano P.
        • Wang S.
        • et al.
        Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions.
        Nat Genet. 2006; 38: 1341-1347
        • Pott S.
        • Lieb J.D.
        What are super-enhancers?.
        Nat Genet. 2015; 47: 8-12
        • Whyte W.A.
        • Orlando D.A.
        • Hnisz D.
        • Abraham B.J.
        • Lin C.Y.
        • Kagey M.H.
        • et al.
        Master transcription factors and mediator establish super-enhancers at key cell identity genes.
        Cell. 2013; 153: 307-319
        • Hnisz D.
        • Abraham B.J.
        • Lee T.I.
        • Lau A.
        • Saint-André V.
        • Sigova A.A.
        • et al.
        Super-enhancers in the control of cell identity and disease.
        Cell. 2013; 155: 934-947
        • Simonetto D.A.
        • Yang H.Y.
        • Yin M.
        • de Assuncao T.M.
        • Kwon J.H.
        • Hilscher M.
        • et al.
        Chronic passive venous congestion drives hepatic fibrogenesis via sinusoidal thrombosis and mechanical forces.
        Hepatology. 2015; 61: 648-659
        • Liu M.
        • Cao S.
        • He L.
        • Gao J.
        • Arab J.P.
        • Cui H.
        • et al.
        Super enhancer regulation of cytokine-induced chemokine production in alcoholic hepatitis.
        Nat Commun. 2021; 12: 4560
        • Roberts S.J.
        • Somero G.N.
        Properties of the interaction between phosphofructokinase and actin.
        Arch Biochem Biophys. 1989; 269: 284-294
        • Gizak A.
        • Wiśniewski J.
        • Heron P.
        • Mamczur P.
        • Sygusch J.
        • Rakus D.
        Targeting a moonlighting function of aldolase induces apoptosis in cancer cells.
        Cell Death Dis. 2019; 10: 712
        • Das A.
        • Fischer R.S.
        • Pan D.
        • Waterman C.M.
        YAP nuclear localization in the absence of cell-cell contact is mediated by a filamentous actin-dependent, myosin II- and phospho-YAP-independent pathway during extracellular matrix mechanosensing.
        J Biol Chem. 2016; 291: 6096-6110
        • Aragona M.
        • Panciera T.
        • Manfrin A.
        • Giulitti S.
        • Michielin F.
        • Elvassore N.
        • et al.
        A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors.
        Cell. 2013; 154: 1047-1059
        • Elosegui-Artola A.
        • Oria R.
        • Chen Y.
        • Kosmalska A.
        • Pérez-González C.
        • Castro N.
        • et al.
        Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity.
        Nat Cell Biol. 2016; 18: 540-548
        • Guixé-Muntet S.
        • Ortega-Ribera M.
        • Wang C.
        • Selicean S.
        • Andreu I.
        • Kechagia J.Z.
        • et al.
        Nuclear deformation mediates liver cell mechanosensing in cirrhosis.
        JHEP Rep. 2020; 2: 100145
        • Xie N.
        • Tan Z.
        • Banerjee S.
        • Cui H.
        • Ge J.
        • Liu R.M.
        • et al.
        Glycolytic reprogramming in myofibroblast differentiation and lung fibrosis.
        Am J Respir Crit Care Med. 2015; 192: 1462-1474
        • Liu L.
        • You Z.
        • Yu H.
        • Zhou L.
        • Zhao H.
        • Yan X.
        • et al.
        Mechanotransduction-modulated fibrotic microniches reveal the contribution of angiogenesis in liver fibrosis.
        Nat Mater. 2017; 16: 1252-1261
        • Garcia-Pras E.
        • Gallego J.
        • Coch L.
        • Mejias M.
        • Fernandez-Miranda G.
        • Pardal R.
        • et al.
        Role and therapeutic potential of vascular stem/progenitor cells in pathological neovascularisation during chronic portal hypertension.
        Gut. 2017; 66: 1306-1320
        • Klein S.
        • Rick J.
        • Lehmann J.
        • Schierwagen R.
        • Schierwagen I.G.
        • Verbeke L.
        • et al.
        Janus-kinase-2 relates directly to portal hypertension and to complications in rodent and human cirrhosis.
        Gut. 2017; 66: 145-155
        • Furuta K.
        • Guo Q.
        • Pavelko K.D.
        • Lee J.H.
        • Robertson K.D.
        • Nakao Y.
        • et al.
        Lipid-induced endothelial vascular cell adhesion molecule 1 promotes nonalcoholic steatohepatitis pathogenesis.
        J Clin Invest. 2021; 131
        • Tang L.
        • Yang J.
        • Liu W.
        • Tang X.
        • Chen J.
        • Zhao D.
        • et al.
        Liver sinusoidal endothelial cell lectin, LSECtin, negatively regulates hepatic T-cell immune response.
        Gastroenterology. 2009; 137: 1498-1508.e1-5
        • Nahmias Y.
        • Casali M.
        • Barbe L.
        • Berthiaume F.
        • Yarmush M.L.
        Liver endothelial cells promote LDL-R expression and the uptake of HCV-like particles in primary rat and human hepatocytes.
        Hepatology. 2006; 43: 257-265