Highlights
- •We identify recurrent HMBS-inactivating mutations in hepatocellular carcinoma.
- •Bi-allelic HMBS inactivation occurs both in patients with acute intermittent porphyria and sporadic HCC.
- •HMBS inactivation induces a massive accumulation of its toxic substrate porphobilinogen.
- •HMBS-mutated HCC mostly develop in females, in the absence of fibrosis and classical HCC risk factors.
- •HMBS-mutated HCC display activating CTNNB1 mutations and Wnt/β-catenin pathway activation.
Background & Aims
Methods
Results
Conclusions
Lay summary
Graphical abstract

Keywords
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Journal of HepatologyReferences
- Hepatocellular carcinoma.Nat Rev Dis Primers. 2021; 7: 1-28https://doi.org/10.1038/s41572-020-00240-3
- Molecular classification of hepatocellular adenoma associates with risk factors, bleeding, and malignant transformation.Gastroenterology. 2017; 152: 880-894.e6https://doi.org/10.1053/j.gastro.2016.11.042
- Cyclin A2/E1 activation defines a hepatocellular carcinoma subclass with a rearrangement signature of replication stress.Nat Commun. 2018; 9: 5235https://doi.org/10.1038/s41467-018-07552-9
- Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets.Nat Genet. 2015; 47: 505-511https://doi.org/10.1038/ng.3252
- Whole-genome mutational landscape and characterization of noncoding and structural mutations in liver cancer.Nat Genet. 2016; 48: 500-509https://doi.org/10.1038/ng.3547
- Comprehensive and integrative genomic characterization of hepatocellular carcinoma.Cell. 2017; 169: 1327-1341.e23https://doi.org/10.1016/j.cell.2017.05.046
- Genetic landscape and biomarkers of hepatocellular carcinoma.Gastroenterology. 2015; 149: 1226-1239.e4https://doi.org/10.1053/j.gastro.2015.05.061
- Discovery and saturation analysis of cancer genes across 21 tumour types.Nature. 2014; 505: 495-501https://doi.org/10.1038/nature12912
- The epidemiology of hepatocellular carcinoma in patients with acute intermittent porphyria.J Intern Med. 1996; 240: 195-201https://doi.org/10.1046/j.1365-2796.1996.21847000.x
- Primary liver cancer, other malignancies, and mortality risks following porphyria: a cohort study in Denmark and Sweden.Am J Epidemiol. 1999; 149: 1010-1015https://doi.org/10.1093/oxfordjournals.aje.a009745
- Hepatocellular carcinoma in patients with acute hepatic porphyria: frequency of occurrence and related factors.J Hepatol. 2000; 32: 933-939https://doi.org/10.1016/s0168-8278(00)80097-5
- Screening for hepatocellular carcinoma in acute intermittent porphyria: a 15-year follow-up in northern Sweden.J Intern Med. 2011; 269: 538-545https://doi.org/10.1111/j.1365-2796.2010.02335.x
- High risk of primary liver cancer in a cohort of 179 patients with Acute Hepatic Porphyria.J Inherit Metab Dis. 2013; 36: 1063-1071https://doi.org/10.1007/s10545-012-9576-9
- Hepatocellular carcinoma in acute hepatic porphyrias: a Damocles Sword.Mol Genet Metab. 2019; 128: 236-241https://doi.org/10.1016/j.ymgme.2018.10.001
- Hepatocellular carcinoma in acute hepatic porphyrias: results from the longitudinal study of the U.S. Porphyrias Consortium.Hepatology. 2021; 73: 1736-1746https://doi.org/10.1002/hep.31460
Meyer UA, Strand LJ, Doss M, Rees AC, Marver HS. Intermittent acute porphyria — demonstration of a genetic defect in porphobilinogen metabolism. Https://Doi-OrgProxyInsermbiblioInistFr/101056/NEJM197206152862401 2010. https://doi.org/10.1056/NEJM197206152862401.
- Porphyrias.The Lancet. 2010; 375: 924-937https://doi.org/10.1016/S0140-6736(09)61925-5
- Update review of the acute porphyrias.Br J Haematol. 2017; 176: 527-538https://doi.org/10.1111/bjh.14459
- Acute intermittent porphyria: prevalence of mutations in the porphobilinogen deaminase gene in blood donors in France.J Intern Med. 1997; 242: 213-217https://doi.org/10.1046/j.1365-2796.1997.00189.x
- Acute intermittent porphyria: predicted pathogenicity of HMBS variants indicates extremely low penetrance of the autosomal dominant disease.Hum Mutat. 2016; 37: 1215-1222https://doi.org/10.1002/humu.23067
- Pathogenesis and clinical features of the acute hepatic porphyrias (AHPs).Mol Genet Metab. 2019; 128: 213-218https://doi.org/10.1016/j.ymgme.2019.03.002
- Variations in porphobilinogen and 5-aminolevulinic acid concentrations in plasma and urine from asymptomatic carriers of the acute intermittent porphyria gene with increased porphyrin precursor excretion.Clin Chem. 2006; 52: 701-707https://doi.org/10.1373/clinchem.2005.058198
- Plasma porphobilinogen as a sensitive biomarker to monitor the clinical and therapeutic course of acute intermittent porphyria attacks.Eur J Intern Med. 2009; 20: 201-207https://doi.org/10.1016/j.ejim.2008.06.012
- Risk of primary liver cancer in acute hepatic porphyria patients: a matched cohort study of 1244 individuals.J Intern Med. 2022; https://doi.org/10.1111/joim.13463
- Acute hepatic porphyria and hepatocellular carcinoma.Br J Cancer. 1988; 57: 117-120https://doi.org/10.1038/bjc.1988.23
- Biallelic inactivation of protoporphyrinogen oxidase and hydroxymethylbilane synthase is associated with liver cancer in acute porphyrias.J Hepatol. 2015; 62: 734-738https://doi.org/10.1016/j.jhep.2014.11.029
- Mutational heterogeneity in cancer and the search for new cancer-associated genes.Nature. 2013; 499: 214-218https://doi.org/10.1038/nature12213
- The Human Gene Mutation Database (HGMD®): optimizing its use in a clinical diagnostic or research setting.Hum Genet. 2020; 139: 1197-1207https://doi.org/10.1007/s00439-020-02199-3
- DNA methylation signatures reveal the diversity of processes remodeling hepatocellular carcinoma methylomes.Hepatology. 2021; 74: 816-834https://doi.org/10.1002/hep.31796
- β-Catenin activation promotes immune escape and resistance to anti-PD-1 therapy in hepatocellular carcinoma.Cancer Discov. 2019; 9: 1124-1141https://doi.org/10.1158/2159-8290.CD-19-0074
- From a dominant to an oligogenic model of inheritance with environmental modifiers in acute intermittent porphyria.Hum Mol Genet. 2018; 27: 1164-1173https://doi.org/10.1093/hmg/ddy030
- Acute porphyrias: pathogenesis of neurological manifestations.Semin Liver Dis. 1998; 18: 43-52https://doi.org/10.1055/s-2007-1007139
- Protoporphyrin IX is a dual inhibitor of p53/MDM2 and p53/MDM4 interactions and induces apoptosis in B-cell chronic lymphocytic leukemia cells.Cell Death Discov. 2019; 5: 77https://doi.org/10.1038/s41420-019-0157-7
- Protoporphyrin IX interacts with wild-type p53 protein in vitro and induces cell death of human colon cancer cells in a p53-dependent and -independent manner.J Biol Chem. 2007; 282: 2466-2472https://doi.org/10.1074/jbc.M608906200
- The multifaceted role of heme in cancer.Front Oncol. 2019; 9: 1540https://doi.org/10.3389/fonc.2019.01540
- Acute intermittent porphyria: clinical and selected research aspects.Ann Intern Med. 1975; 83: 851-864https://doi.org/10.7326/0003-4819-83-6-851
- LHRH analogues for hormonal manipulation in acute intermittent porphyria.Semin Hematol. 1989; 26: 10-15
- The induction in vitro of the synthesis of delta-aminolevulinic acid synthetase in chemical porphyria: a response to certain drugs, sex hormones, and foreign chemicals.J Biol Chem. 1966; 241: 1359-1375
Anderson KE, Spitz IM, Sassa S, Bardin CW, Kappas A. Prevention of cyclical attacks of acute intermittent porphyria with a long-acting agonist of luteinizing hormone–releasing hormone. Http://DxDoiOrg/101056/NEJM198409063111006 2010. https://doi.org/10.1056/NEJM198409063111006.
- Loss of hepatocyte β-catenin protects mice from experimental porphyria-associated liver injury.J Hepatol. 2019; 70: 108-117https://doi.org/10.1016/j.jhep.2018.09.023
- Zonation of heme synthesis enzymes in mouse liver and their regulation by β-catenin and Ha-ras.Biol Chem. 2010; 391: 1305-1313https://doi.org/10.1515/BC.2010.115
- Hallmarks of cancer: the next generation.Cell. 2011; 144: 646-674https://doi.org/10.1016/j.cell.2011.02.013
- The emerging hallmarks of cancer metabolism.Cell Metab. 2016; 23: 27-47https://doi.org/10.1016/j.cmet.2015.12.006
- An integrated genomic analysis of human glioblastoma multiforme.Science. 2008; 321: 1807-1812https://doi.org/10.1126/science.1164382
- Recurring mutations found by sequencing an acute myeloid leukemia genome.N Engl J Med. 2009; 361: 1058-1066https://doi.org/10.1056/NEJMoa0903840
- Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma.Science. 2000; 287: 848-851https://doi.org/10.1126/science.287.5454.848
- Few FH mutations in sporadic counterparts of tumor types observed in hereditary leiomyomatosis and renal cell cancer families.Cancer Res. 2002; 62: 4554-4557
- An integrated computational and experimental study uncovers FUT9 as a metabolic driver of colorectal cancer.Mol Syst Biol. 2017; 13: 956https://doi.org/10.15252/msb.20177739
- Mutational signatures reveal the dynamic interplay of risk factors and cellular processes during liver tumorigenesis.Nat Commun. 2017; 8: 1315https://doi.org/10.1038/s41467-017-01358-x
- BAP1 mutations define a homogeneous subgroup of hepatocellular carcinoma with fibrolamellar-like features and activated PKA.J Hepatol. 2020; 72: 924-936https://doi.org/10.1016/j.jhep.2019.12.006
- Hepatitis B virus integrations promote local and distant oncogenic driver alterations in hepatocellular carcinoma.Gut. 2021; (gutjnl-2020-323153)https://doi.org/10.1136/gutjnl-2020-323153
- Macrotrabecular-massive hepatocellular carcinoma: a distinctive histological subtype with clinical relevance.Hepatology. 2018; 68: 103-112https://doi.org/10.1002/hep.29762
- Palimpsest: an R package for studying mutational and structural variant signatures along clonal evolution in cancer.Bioinformatics. 2018; 34: 3380-3381https://doi.org/10.1093/bioinformatics/bty388
- A high dose of isoniazid disturbs endobiotic homeostasis in mouse liver.Drug Metab Dispos. 2016; 44: 1742-1751https://doi.org/10.1124/dmd.116.070920
- The essential role of the transporter ABCG2 in the pathophysiology of erythropoietic protoporphyria.Sci Adv. 2019; 5: eaaw6127https://doi.org/10.1126/sciadv.aaw6127
- Identification of novel pathways in idelalisib metabolism and bioactivation.Chem Res Toxicol. 2018; 31: 548-555https://doi.org/10.1021/acs.chemrestox.8b00023
- Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets.Hepatology. 2007; 45: 42-52https://doi.org/10.1002/hep.21467
- Clinical impact of genomic diversity from early to advanced hepatocellular carcinoma.Hepatology. 2020; 71: 164-182https://doi.org/10.1002/hep.30811
- Analysis of liver cancer cell lines identifies agents with likely efficacy against hepatocellular carcinoma and markers of response.Gastroenterology. 2019; 157: 760-776https://doi.org/10.1053/j.gastro.2019.05.001
Article info
Publication history
Footnotes
Author names in bold designate shared co-first authorship