Advertisement

Changes in abdominal adipose tissue depots assessed by MRI correlate with hepatic histologic improvement in non-alcoholic steatohepatitis

Published:November 07, 2022DOI:https://doi.org/10.1016/j.jhep.2022.10.027

      Highlights

      • This is a secondary analysis of a subgroup of patients who had MRI exams in the FLINT trial.
      • Those with NASH who experienced a greater loss of deep subcutaneous adipose tissue showed greater histologic improvement.
      • Patients with greater loss of visceral adipose tissue probably also had greater levels of histologic improvement.

      Background & Aims

      Non-alcoholic steatohepatitis (NASH) is prevalent in adults with obesity and can progress to cirrhosis. In a secondary analysis of prospectively acquired data from the multicenter, randomized, placebo-controlled FLINT trial, we investigated the relationship between reduction in adipose tissue compartment volumes and hepatic histologic improvement.

      Methods

      Adult participants in the FLINT trial with paired liver biopsies and abdominal MRI exams at baseline and end-of-treatment (72 weeks) were included (n = 76). Adipose tissue compartment volumes were obtained using MRI.

      Results

      Treatment and placebo groups did not differ in baseline adipose tissue volumes, or in change in adipose tissue volumes longitudinally (p = 0.107 to 0.745). Deep subcutaneous adipose tissue (dSAT) and visceral adipose tissue volume reductions were associated with histologic improvement in NASH (i.e., NAS [non-alcoholic fatty liver disease activity score] reductions of ≥2 points, at least 1 point from lobular inflammation and hepatocellular ballooning, and no worsening of fibrosis) (p = 0.031, and 0.030, respectively). In a stepwise logistic regression procedure, which included demographics, treatment group, baseline histology, baseline and changes in adipose tissue volumes, MRI hepatic proton density fat fraction (PDFF), and serum aminotransferases as potential predictors, reductions in dSAT and PDFF were associated with histologic improvement in NASH (regression coefficient = -2.001 and -0.083, p = 0.044 and 0.033, respectively).

      Conclusions

      In adults with NASH in the FLINT trial, those with greater longitudinal reductions in dSAT and potentially visceral adipose tissue volumes showed greater hepatic histologic improvements, independent of reductions in hepatic PDFF.

      Clinical trial number

      NCT01265498.

      Impact and implications

      Although central obesity has been identified as a risk factor for obesity-related disorders including insulin resistance and cardiovascular disease, the role of central obesity in non-alcoholic steatohepatitis (NASH) warrants further clarification. Our results highlight that a reduction in central obesity, specifically deep subcutaneous adipose tissue and visceral adipose tissue, may be related to histologic improvement in NASH. The findings from this analysis should increase awareness of the importance of lifestyle intervention in NASH for clinical researchers and clinicians. Future studies and clinical practice may design interventions that assess the reduction of deep subcutaneous adipose tissue and visceral adipose tissue as outcome measures, rather than simply weight reduction.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Hepatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Chalasani N.
        • Younossi Z.
        • Lavine J.E.
        • Charlton M.
        • Cusi K.
        • Rinella M.
        • et al.
        The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases.
        Hepatology. 2018; 67: 328-357
        • Schwimmer J.B.
        • Pardee P.E.
        • Lavine J.E.
        • Blumkin A.K.
        • Cook S.
        Cardiovascular risk factors and the metabolic syndrome in pediatric nonalcoholic fatty liver disease.
        Circulation. 2008; 118: 277-283
        • Santoro N.
        • Caprio S.
        Nonalcoholic fatty liver disease/nonalcoholic steatohepatitis in obese adolescents: a looming marker of cardiac dysfunction.
        Hepatology. 2014; 59: 372-374
        • Lawlor D.A.
        • Callaway M.
        • Macdonald-Wallis C.
        • Anderson E.
        • Fraser A.
        • Howe L.D.
        • et al.
        Nonalcoholic fatty liver disease, liver fibrosis, and cardiometabolic risk factors in adolescence: a cross-sectional study of 1874 general population adolescents.
        J Clin Endocrinol Metab. 2014; 99: E410-E417
        • McCullough A.J.
        Update on nonalcoholic fatty liver disease.
        J Clin Gastroenterol. 2002; 34: 255-262
        • Sahakyan K.R.
        • Somers V.K.
        • Rodriguez-Escudero J.P.
        • Hodge D.O.
        • Carter R.E.
        • Sochor O.
        • et al.
        Normal-weight central obesity: implications for total and cardiovascular mortality.
        Ann Intern Med. 2015; 163: 827-835
        • Racette S.B.
        • Evans E.M.
        • Weiss E.P.
        • Hagberg J.M.
        • Holloszy J.O.
        Abdominal adiposity is a stronger predictor of insulin resistance than fitness among 50-95 year olds.
        Diabetes Care. 2006; 29: 673-678
        • Gastaldelli A.
        • Cusi K.
        From NASH to diabetes and from diabetes to NASH: mechanisms and treatment options.
        JHEP Rep. 2019; 1: 312-328
        • Ahima R.S.
        • Flier J.S.
        Adipose tissue as an endocrine organ.
        Trends Endocrinol Metab. 2000; 11: 327-332
        • Fontana L.
        • Eagon J.C.
        • Trujillo M.E.
        • Scherer P.E.
        • Klein S.
        Visceral fat adipokine secretion is associated with systemic inflammation in obese humans.
        Diabetes. 2007; 56: 1010-1013
        • Panagiotakos D.B.
        • Pitsavos C.
        • Yannakoulia M.
        • Chrysohoou C.
        • Stefanadis C.
        The implication of obesity and central fat on markers of chronic inflammation: the ATTICA study.
        Atherosclerosis. 2005; 183: 308-315
        • Makhsida N.
        • Shah J.
        • Yan G.
        • Fisch H.
        • Shabsigh R.
        Hypogonadism and metabolic syndrome: implications for testosterone therapy.
        J Urol. 2005; 174: 827-834
        • Wajchenberg B.L.
        Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome.
        Endocr Rev. 2000; 21: 697-738
        • Eguchi Y.
        • Mizuta T.
        • Sumida Y.
        • Ishibashi E.
        • Kitajima Y.
        • Isoda H.
        • et al.
        The pathological role of visceral fat accumulation in steatosis, inflammation, and progression of nonalcoholic fatty liver disease.
        J Gastroenterol. 2011; 46: 70-78
        • Vitturi N.
        • Soattin M.
        • De Stefano F.
        • Vianello D.
        • Zambon A.
        • Plebani M.
        • et al.
        Ultrasound, anthropometry and bioimpedance: a comparison in predicting fat deposition in non-alcoholic fatty liver disease. Eating and weight disorders.
        EWD. 2015; 20: 241-247
        • Ercin C.N.
        • Dogru T.
        • Genc H.
        • Celebi G.
        • Aslan F.
        • Gurel H.
        • et al.
        Insulin resistance but not visceral adiposity index is associated with liver fibrosis in nondiabetic subjects with nonalcoholic fatty liver disease.
        Metab Syndr Relat Disord. 2015; 13: 319-325
        • Vongsuvanh R.
        • George J.
        • McLeod D.
        • van der Poorten D.
        Visceral adiposity index is not a predictor of liver histology in patients with non-alcoholic fatty liver disease.
        J Hepatol. 2012; 57: 392-398
        • Choudhary N.S.
        • Duseja A.
        • Kalra N.
        • Das A.
        • Dhiman R.K.
        • Chawla Y.K.
        Correlation of adipose tissue with liver histology in Asian Indian patients with nonalcoholic fatty liver disease (NAFLD).
        Ann Hepatol. 2012; 11: 478-486
        • Ha Y.
        • Seo N.
        • Shim J.H.
        • Kim S.Y.
        • Park J.A.
        • Han S.
        • et al.
        Intimate association of visceral obesity with non-alcoholic fatty liver disease in healthy Asians: a case-control study.
        J Gastroenterol Hepatol. 2015; 30: 1666-1672
        • Tordjman J.
        • Divoux A.
        • Prifti E.
        • Poitou C.
        • Pelloux V.
        • Hugol D.
        • et al.
        Structural and inflammatory heterogeneity in subcutaneous adipose tissue: relation with liver histopathology in morbid obesity.
        J Hepatol. 2012; 56: 1152-1158
        • Kim S.H.
        • Chung J.H.
        • Song S.W.
        • Jung W.S.
        • Lee Y.A.
        • Kim H.N.
        Relationship between deep subcutaneous abdominal adipose tissue and metabolic syndrome: a case control study.
        Diabetol Metab Syndr. 2016; 8: 10
        • Walker G.E.
        • Verti B.
        • Marzullo P.
        • Savia G.
        • Mencarelli M.
        • Zurleni F.
        • et al.
        Deep subcutaneous adipose tissue: a distinct abdominal adipose depot.
        Obesity (Silver Spring). 2007; 15: 1933-1943
        • Marinou K.
        • Hodson L.
        • Vasan S.K.
        • Fielding B.A.
        • Banerjee R.
        • Brismar K.
        • et al.
        Structural and functional properties of deep abdominal subcutaneous adipose tissue explain its association with insulin resistance and cardiovascular risk in men.
        Diabetes Care. 2014; 37: 821-829
        • Bódis K.
        • Jelenik T.
        • Lundbom J.
        • Markgraf D.F.
        • Strom A.
        • Zaharia O.P.
        • et al.
        Expansion and impaired mitochondrial efficiency of deep subcutaneous adipose tissue in recent-onset type 2 diabetes.
        J Clin Endocrinol Metab. 2019; 105: e1331-e1343
        • Neuschwander-Tetri B.A.
        • Loomba R.
        • Sanyal A.J.
        • Lavine J.E.
        • Van Natta M.L.
        • Abdelmalek M.F.
        • et al.
        Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial.
        Lancet. 2015; 385: 956-965
        • Loomba R.
        • Neuschwander-Tetri B.A.
        • Sanyal A.
        • Chalasani N.
        • Diehl A.M.
        • Terrault N.
        • et al.
        Multicenter validation of association between decline in MRI-PDFF and histologic response in nonalcoholic steatohepatitis.
        Hepatology. 2020; 72: 1219-1229
        • Brunt E.M.
        • Kleiner D.E.
        • Wilson L.A.
        • Belt P.
        • Neuschwander-Tetri B.A.
        • Nash Clinical Research Network
        Nonalcoholic fatty liver disease (NAFLD) activity score and the histopathologic diagnosis in NAFLD: distinct clinicopathologic meanings.
        Hepatology. 2011; 53: 810-820
        • Middleton M.S.
        • Heba E.R.
        • Hooker C.A.
        • Bashir M.R.
        • Fowler K.J.
        • Sandrasegaran K.
        • et al.
        Agreement between magnetic resonance imaging proton density fat fraction measurements and pathologist-assigned steatosis grades of liver biopsies from adults with nonalcoholic steatohepatitis.
        Gastroenterology. 2017; 153: 753-761
        • Brunt E.M.
        • Kleiner D.E.
        • Wilson L.A.
        • Sanyal A.J.
        • Neuschwander-Tetri B.A.
        • Nonalcoholic Steatohepatitis Clinical Research Network
        Improvements in histologic features and diagnosis associated with improvement in fibrosis in nonalcoholic steatohepatitis: results from the nonalcoholic steatohepatitis clinical research network treatment trials.
        Hepatology. 2019; 70: 522-531
        • Francque S.M.
        • Bedossa P.
        • Ratziu V.
        • Anstee Q.M.
        • Bugianesi E.
        • Sanyal A.J.
        • et al.
        A randomized, controlled trial of the pan-PPAR agonist lanifibranor in NASH.
        N Engl J Med. 2021; 385: 1547-1558
        • Shen W.
        • Wang Z.
        • Tang H.
        • Heshka S.
        • Punyanitya M.
        • Zhu S.
        • et al.
        Volume estimates by imaging methods: model comparisons with visible woman as the reference.
        Obes Res. 2003; 11: 217-225
        • Middleton M.S.
        • Haufe W.
        • Hooker J.
        • Borga M.
        • Dahlqvist Leinhard O.
        • Romu T.
        • et al.
        Quantifying abdominal adipose tissue and thigh muscle volume and hepatic proton density fat fraction: repeatability and accuracy of an MR imaging-based, semiautomated analysis method.
        Radiology. 2017; 283: 438-449
        • Vilar-Gomez E.
        • Martinez-Perez Y.
        • Calzadilla-Bertot L.
        • Torres-Gonzalez A.
        • Gra-Oramas B.
        • Gonzalez-Fabian L.
        • et al.
        Weight loss through lifestyle modification significantly reduces features of nonalcoholic steatohepatitis.
        Gastroenterology. 2015; 149 (quiz e314-365): 367-378 e365
        • Shen W.
        • Chen J.
        • Gantz M.
        • Velasquez G.
        • Punyanitya M.
        • Heymsfield S.B.
        A single MRI slice does not accurately predict visceral and subcutaneous adipose tissue changes during weight loss.
        Obesity (Silver Spring). 2012; 20: 2458-2463
        • Caussy C.
        • Reeder S.B.
        • Sirlin C.B.
        • Loomba R.
        Noninvasive, quantitative assessment of liver fat by MRI-PDFF as an endpoint in NASH trials.
        Hepatology. 2018; 68: 763-772
        • Sanyal A.J.
        • Brunt E.M.
        • Kleiner D.E.
        • Kowdley K.V.
        • Chalasani N.
        • Lavine J.E.
        • et al.
        Endpoints and clinical trial design for nonalcoholic steatohepatitis.
        Hepatology. 2011; 54: 344-353
        • Armstrong M.J.
        • Hazlehurst J.M.
        • Hull D.
        • Guo K.
        • Borrows S.
        • Yu J.
        • et al.
        Abdominal subcutaneous adipose tissue insulin resistance and lipolysis in patients with non-alcoholic steatohepatitis.
        Diabetes Obes Metab. 2014; 16: 651-660
        • Ota T.
        • Takamura T.
        • Kurita S.
        • Matsuzawa N.
        • Kita Y.
        • Uno M.
        • et al.
        Insulin resistance accelerates a dietary rat model of nonalcoholic steatohepatitis.
        Gastroenterology. 2007; 132: 282-293
        • Kawano Y.
        • Cohen D.E.
        Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver disease.
        J Gastroenterol. 2013; 48: 434-441
        • Al-Busafi S.A.
        • Bhat M.
        • Wong P.
        • Ghali P.
        • Deschenes M.
        Antioxidant therapy in nonalcoholic steatohepatitis.
        Hepat Res Treat. 2012; 2012947575
        • Uygun A.
        • Kadayifci A.
        • Yesilova Z.
        • Erdil A.
        • Yaman H.
        • Saka M.
        • et al.
        Serum leptin levels in patients with nonalcoholic steatohepatitis.
        Am J Gastroenterol. 2000; 95: 3584-3589
        • Musso G.
        • Gambino R.
        • Biroli G.
        • Carello M.
        • Faga E.
        • Pacini G.
        • et al.
        Hypoadiponectinemia predicts the severity of hepatic fibrosis and pancreatic Beta-cell dysfunction in nondiabetic nonobese patients with nonalcoholic steatohepatitis.
        Am J Gastroenterol. 2005; 100: 2438-2446
        • Kadowaki T.
        • Yamauchi T.
        Adiponectin and adiponectin receptors.
        Endocr Rev. 2005; 26: 439-451
        • Cordeiro A.
        • Costa R.
        • Andrade N.
        • Silva C.
        • Canabrava N.
        • Pena M.J.
        • et al.
        Does adipose tissue inflammation drive the development of non-alcoholic fatty liver disease in obesity?.
        Clin Res Hepatol Gastroenterol. 2020; 44: 394-402
        • Valenti L.
        • Al-Serri A.
        • Daly A.K.
        • Galmozzi E.
        • Rametta R.
        • Dongiovanni P.
        • et al.
        Homozygosity for the patatin-like phospholipase-3/adiponutrin I148M polymorphism influences liver fibrosis in patients with nonalcoholic fatty liver disease.
        Hepatology. 2010; 51: 1209-1217
        • Romeo S.
        • Kozlitina J.
        • Xing C.
        • Pertsemlidis A.
        • Cox D.
        • Pennacchio L.A.
        • et al.
        Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease.
        Nat Genet. 2008; 40: 1461-1465
        • Graff M.
        • North K.E.
        • Franceschini N.
        • Reiner A.P.
        • Feitosa M.
        • Carr J.J.
        • et al.
        PNPLA3 gene-by-visceral adipose tissue volume interaction and the pathogenesis of fatty liver disease: the NHLBI family heart study.
        Int J Obes (Lond). 2013; 37: 432-438
        • Shubham K.
        • Vinay L.
        • Vinod P.K.
        Systems-level organization of non-alcoholic fatty liver disease progression network.
        Mol Biosyst. 2017; 13: 1898-1911