Using mouse liver cancer models based on somatic genome editing to predict immune checkpoint inhibitor responses

Published:November 28, 2022DOI:


      • Genetic alterations of different driver genes in liver cancer can be closely modelled in mice.
      • Mouse HCC of different genetics can be grouped into hot and cold tumors by the level of tumor-infiltrating CD8+ T cells.
      • Hot tumors are responsive to anti-PD-1 treatment.
      • Combined treatment with anti-PD-1 and sorafenib is more effective for cold tumors.

      Background & Aims

      Tyrosine kinase inhibitors (TKIs) and immune checkpoint inhibitors (ICIs) are the only two classes of FDA-approved drugs for individuals with advanced hepatocellular carcinoma (HCC). While TKIs confer only modest survival benefits, ICIs have been associated with remarkable outcomes but only in the minority of patients who respond. Understanding the mechanisms that determine the efficacy of ICIs in HCC will help to stratify patients likely to respond to ICIs. This study aims to elucidate how genetic composition and specific oncogenic pathways regulate the immune composition of HCC, which directly affects response to ICIs.


      A collection of mouse HCCs with genotypes that closely simulate the genetic composition found in human HCCs were established using genome-editing approaches involving the delivery of transposon and CRISPR-Cas9 systems by hydrodynamic tail vein injection. Mouse HCC tumors were analyzed by RNA-sequencing while tumor-infiltrating T cells were analyzed by flow cytometry and single-cell RNA-sequencing.


      Based on the CD8+ T cell-infiltration level, we characterized tumors with different genotypes into cold and hot tumors. Anti-PD-1 treatment had no effect in cold tumors but was greatly effective in hot tumors. As proof-of-concept, a cold tumor (Trp53KO/MYCOE) and a hot tumor (Keap1KO/MYCOE) were further characterized. Tumor-infiltrating CD8+ T cells from Keap1KO/MYCOE HCCs expressed higher levels of proinflammatory chemokines and exhibited enrichment of a progenitor exhausted CD8+ T-cell phenotype compared to those in Trp53KO/MYCOE HCCs. The TKI sorafenib sensitized Trp53KO/MYCOE HCCs to anti-PD-1 treatment.


      Single anti-PD-1 treatment appears to be effective in HCCs with genetic mutations driving hot tumors, while combined anti-PD-1 and sorafenib treatment may be more appropriate in HCCs with genetic mutations driving cold tumors.

      Impact and implications

      Genetic alterations of different driver genes in mouse liver cancers are associated with tumor-infiltrating CD8+ T cells and anti-PD-1 response. Mouse HCCs with different genetic compositions can be grouped into hot and cold tumors based on the level of tumor-infiltrating CD8+ T cells. This study provides proof-of-concept evidence to show that hot tumors are responsive to anti-PD-1 treatment while cold tumors are more suitable for combined treatment with anti-PD-1 and sorafenib. Our study might help to guide the design of patient stratification systems for single or combined treatments involving anti-PD-1.

      Graphical abstract


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Journal of Hepatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • International Agency for Research on Cancer
        Globocan 2020.
        IARC, 2020
        • Abou-Alfa G.K.
        • Meyer T.
        • Cheng A.L.
        • El-Khoueiry A.B.
        • Rimassa L.
        • Ryoo B.Y.
        • et al.
        Cabozantinib in patients with advanced and progressing hepatocellular carcinoma.
        N Engl J Med. 2018; 379: 54-63
        • Bruix J.
        • Qin S.
        • Merle P.
        • Granito A.
        • Huang Y.H.
        • Bodoky G.
        • et al.
        Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial.
        Lancet. 2017; 389: 56-66
        • Kudo M.
        • Finn R.S.
        • Qin S.
        • Han K.H.
        • Ikeda K.
        • Piscaglia F.
        • et al.
        Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial.
        Lancet. 2018; 391: 1163-1173
        • Llovet J.M.
        • Ricci S.
        • Mazzaferro V.
        • Hilgard P.
        • Gane E.
        • Blanc J.F.
        • et al.
        Sorafenib in advanced hepatocellular carcinoma.
        N Engl J Med. 2008; 359: 378-390
        • El-Khoueiry A.B.
        • Sangro B.
        • Yau T.
        • Crocenzi T.S.
        • Kudo M.
        • Hsu C.
        • et al.
        Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial.
        Lancet. 2017; 389: 2492-2502
        • Yau T.
        • Park J.W.
        • Finn R.S.
        • Cheng A.L.
        • Mathurin P.
        • Edeline J.
        • et al.
        Nivolumab versus sorafenib in advanced hepatocellular carcinoma (CheckMate 459): a randomised, multicentre, open-label, phase 3 trial.
        Lancet Oncol. 2021; 23: 77-90
        • Finn R.S.
        • Qin S.
        • Ikeda M.
        • Galle P.R.
        • Ducreux M.
        • Kim T.Y.
        • et al.
        Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma.
        N Engl J Med. 2020; 382: 1894-1905
        • Casak S.J.
        • Donoghue M.
        • Fashoyin-Aje L.
        • Jiang X.
        • Rodriguez L.
        • Shen Y.L.
        • et al.
        FDA Approval Summary: atezolizumab plus bevacizumab for the treatment of patients with advanced unresectable or metastatic hepatocellular carcinoma.
        Clin Cancer Res. 2020; 27: 1836-1841
        • Chen D.S.
        • Mellman I.
        Elements of cancer immunity and the cancer-immune set point.
        Nature. 2017; 541: 321-330
        • Cogdill A.P.
        • Andrews M.C.
        • Wargo J.A.
        Hallmarks of response to immune checkpoint blockade.
        Br J Cancer. 2017; 117: 1-7
        • Sia D.
        • Jiao Y.
        • Martinez-Quetglas I.
        • Kuchuk O.
        • Villacorta-Martin C.
        • Castro de Moura M.
        • et al.
        Identification of an immune-specific class of hepatocellular carcinoma, based on molecular features.
        Gastroenterology. 2017; 153: 812-826
        • Montironi C.
        • Castet F.
        • Haber P.K.
        • Pinyol R.
        • Torres-Martin M.
        • Torrens L.
        • et al.
        Inflamed and non-inflamed classes of HCC: a revised immunogenomic classification.
        Gut. 2022; (Online ahead of print)
        • Harding J.J.
        • Nandakumar S.
        • Armenia J.
        • Khalil D.N.
        • Albano M.
        • Ly M.
        • et al.
        Prospective genotyping of hepatocellular carcinoma: clinical implications of next-generation sequencing for matching patients to targeted and immune therapies.
        Clin Cancer Res. 2019; 25: 2116-2126
        • Ruiz de Galarreta M.
        • Bresnahan E.
        • Molina-Sanchez P.
        • Lindblad K.E.
        • Maier B.
        • Sia D.
        • et al.
        Beta-catenin activation promotes immune escape and resistance to anti-PD-1 therapy in hepatocellular carcinoma.
        Cancer Discov. 2019; 9: 1124-1141
        • Zhu A.X.
        • Abbas A.R.
        • de Galarreta M.R.
        • Guan Y.
        • Lu S.
        • Koeppen H.
        • et al.
        Molecular correlates of clinical response and resistance to atezolizumab in combination with bevacizumab in advanced hepatocellular carcinoma.
        Nat Med. 2022; 28: 1599-1611
        • Zucman-Rossi J.
        • Villanueva A.
        • Nault J.C.
        • Llovet J.M.
        Genetic landscape and biomarkers of hepatocellular carcinoma.
        Gastroenterology. 2015; 149: 1226-1239 e1224
        • Peng W.
        • Chen J.Q.
        • Liu C.
        • Malu S.
        • Creasy C.
        • Tetzlaff M.T.
        • et al.
        Loss of PTEN promotes resistance to T cell-mediated immunotherapy.
        Cancer Discov. 2016; 6: 202-216
        • Tumeh P.C.
        • Harview C.L.
        • Yearley J.H.
        • Shintaku I.P.
        • Taylor E.J.
        • Robert L.
        • et al.
        PD-1 blockade induces responses by inhibiting adaptive immune resistance.
        Nature. 2014; 515: 568-571
        • Franciszkiewicz K.
        • Boissonnas A.
        • Boutet M.
        • Combadière C.
        • Mami-Chouaib F.
        Role of chemokines and chemokine receptors in shaping the effector phase of the antitumor immune response.
        Cancer Res. 2012; 72: 6325-6332
        • Hojo S.
        • Koizumi K.
        • Tsuneyama K.
        • Arita Y.
        • Cui Z.
        • Shinohara K.
        • et al.
        High-level expression of chemokine CXCL16 by tumor cells correlates with a good prognosis and increased tumor-infiltrating lymphocytes in colorectal cancer.
        Cancer Res. 2007; 67: 4725-4731
        • Peng D.
        • Kryczek I.
        • Nagarsheth N.
        • Zhao L.
        • Wei S.
        • Wang W.
        • et al.
        Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy.
        Nature. 2015; 527: 249-253
        • Hong M.
        • Puaux A.L.
        • Huang C.
        • Loumagne L.
        • Tow C.
        • Mackay C.
        • et al.
        Chemotherapy induces intratumoral expression of chemokines in cutaneous melanoma, favoring T-cell infiltration and tumor control.
        Cancer Res. 2011; 71: 6997-7009
        • Lee D.F.
        • Kuo H.P.
        • Liu M.
        • Chou C.K.
        • Xia W.
        • Du Y.
        • et al.
        KEAP1 E3 ligase-mediated downregulation of NF-kappaB signaling by targeting IKKbeta.
        Mol Cel. 2009; 36: 131-140
        • Kim J.E.
        • You D.J.
        • Lee C.
        • Ahn C.
        • Seong J.Y.
        • Hwang J.I.
        Suppression of NF-kappaB signaling by KEAP1 regulation of IKKbeta activity through autophagic degradation and inhibition of phosphorylation.
        Cell Signal. 2010; 22: 1645-1654
        • Blank C.U.
        • Haining W.N.
        • Held W.
        • Hogan P.G.
        • Kallies A.
        • Lugli E.
        • et al.
        Defining ‘T cell exhaustion’.
        Nat Rev Immunol. 2019; 19: 665-674
        • He R.
        • Hou S.
        • Liu C.
        • Zhang A.
        • Bai Q.
        • Han M.
        • et al.
        Follicular CXCR5- expressing CD8(+) T cells curtail chronic viral infection.
        Nature. 2016; 537: 412-428
        • Im S.J.
        • Hashimoto M.
        • Gerner M.Y.
        • Lee J.
        • Kissick H.T.
        • Burger M.C.
        • et al.
        Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy.
        Nature. 2016; 537: 417-421
        • Miller B.C.
        • Sen D.R.
        • Al Abosy R.
        • Bi K.
        • Virkud Y.V.
        • LaFleur M.W.
        • et al.
        Subsets of exhausted CD8(+) T cells differentially mediate tumor control and respond to checkpoint blockade.
        Nat Immunol. 2019; 20: 326-336
        • Paley M.A.
        • Kroy D.C.
        • Odorizzi P.M.
        • Johnnidis J.B.
        • Dolfi D.V.
        • Barnett B.E.
        • et al.
        Progenitor and terminal subsets of CD8+ T cells cooperate to contain chronic viral infection.
        Science. 2012; 338: 1220-1225
        • Siddiqui I.
        • Schaeuble K.
        • Chennupati V.
        • Fuertes Marraco S.A.
        • Calderon-Copete S.
        • Pais Ferreira D.
        • et al.
        Intratumoral tcf1(+)pd-1(+)cd8(+) T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy.
        Immunity. 2019; 50: 195-211.e110
        • Utzschneider D.T.
        • Charmoy M.
        • Chennupati V.
        • Pousse L.
        • Ferreira D.P.
        • Calderon-Copete S.
        • et al.
        T cell factor 1-expressing memory-like CD8(+) T cells sustain the immune response to chronic viral infections.
        Immunity. 2016; 45: 415-427
        • Escobar G.
        • Mangani D.
        • Anderson A.C.
        T cell factor 1: a master regulator of the T cell response in disease.
        Sci Immunol. 2020; 5
        • Kallies A.
        • Zehn D.
        • Utzschneider D.T.
        Precursor exhausted T cells: key to successful immunotherapy?.
        Nat Rev Immunol. 2020; 20: 128-136
        • Street K.
        • Risso D.
        • Fletcher R.B.
        • Das D.
        • Ngai J.
        • Yosef N.
        • et al.
        Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics.
        BMC Genomics. 2018; 19: 477
        • Sade-Feldman M.
        • Yizhak K.
        • Bjorgaard S.L.
        • Ray J.P.
        • de Boer C.G.
        • Jenkins R.W.
        • et al.
        Defining T cell states associated with response to checkpoint immunotherapy in melanoma.
        Cell. 2018; 175: 998-1013.e1020
        • Havel J.J.
        • Chowell D.
        • Chan T.A.
        The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy.
        Nat Rev Cancer. 2019; 19: 133-150
        • Samstein R.M.
        • Lee C.H.
        • Shoushtari A.N.
        • Hellmann M.D.
        • Shen R.
        • Janjigian Y.Y.
        • et al.
        Tumor mutational load predicts survival after immunotherapy across multiple cancer types.
        Nat Genet. 2019; 51: 202-206
        • Chen P.L.
        • Roh W.
        • Reuben A.
        • Cooper Z.A.
        • Spencer C.N.
        • Prieto P.A.
        • et al.
        Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade.
        Cancer Discov. 2016; 6: 827-837
        • Finn R.S.
        • Kudo M.
        • Merle P.
        • Meyer T.
        • Qin S.
        • Ikeda M.
        • et al.
        Primary results from the phase III LEAP-002 study: lenvatinib plus pembrolizumab versus lenvatinib as first-line (1L) therapy for advanced hepatocellular carcinoma (aHCC).
        ESMO, 2022 (Abstract LBA34)
        • Molina-Sanchez P.
        • Ruiz de Galarreta M.
        • Yao M.A.
        • Lindblad K.E.
        • Bresnahan E.
        • Bitterman E.
        • et al.
        Cooperation between distinct cancer driver genes underlies intertumor heterogeneity in hepatocellular carcinoma.
        Gastroenterology. 2020; 159: 2203-2220 e2214