Clinical Trial Watch| Volume 67, ISSUE 5, P1084-1103, November 2017

Download started.


Targeting the gut-liver axis in liver disease


      The gut-liver axis is widely implicated in the pathogenesis of liver diseases, where it is increasingly the focus of clinical research. Recent studies trialling an array of therapeutic and preventative strategies have yielded promising results. Considering these strategies, the armamentarium for targeting the gut-liver axis will continue to expand. Further clinical trials, translated from our current knowledge of the gut-liver axis, promise an exciting future in liver treatment.


      Linked Article

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Journal of Hepatology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Cani P.D.
        • Amar J.
        • Iglesias M.A.
        • et al.
        Metabolic endotoxemia initiates obesity and insulin resistance.
        Diabetes. 2007; 56: 1761-1772
        • Suriguga Su
        • Luangmonkong Theerut
        • Bigaeva Emilia
        • Oosterhuis Dorenda
        • Mutsaers Henricus A.M.
        • Groothuis Geny M.
        • et al.
        LPS aggravates fibrosis only in the early onset but not in the end stage of liver fibrosis.
        Hepatology. 2016; 64: 840A
      1. Hiroki Utsunomiya YY, Eiji Takeshita, Yoshio, Tokumoto FT, Teruki Miyake, Masashi Hirooka Masanori Abe TK et al. Upregulated palmitic acid absorption with altered intestinal transporters in non-alcoholic steatohepatitis (NASH). Hepatology 2016; 64.

        • du Plessis J.
        • van Pelt J.
        • Korf H.
        • et al.
        Association of adipose tissue inflammation with histologic severity of nonalcoholic fatty liver disease.
        Gastroenterology. 2015; 149 (e14): 635-648
        • Montano-Loza Aldo J.
        • Michael Sawyer J.M.-J.
        • Vickie Baracos N.M.K.
        High visceral adipose tissue is associated with hepatocellular carcinoma in cirrhosis and increased risk of recurrence after liver transplantation.
        Hepatology. 2016; 64: A126
      2. Balakrishnan M et al., Clinical gastroenterology and hepatology: the official clinical practice journal of the American Gastroenterological Association; 2017.

      3. Fracanzani AL et al., Clinical gastroenterology and hepatology: the official clinical practice journal of the American Gastroenterological Association; 2017.

        • Ye Eun Kwak A.D.
        • Lim Joseph K.
        Central body fat distribution is associated with increased risk of nonalcoholic fatty liver disease in lean individuals: a population based study from the national health and nutrition examination survey.
        Hepatology. 2016; 64: 549A
        • Spadoni I.
        • Zagato E.
        • Bertocchi A.
        • et al.
        A gut-vascular barrier controls the systemic dissemination of bacteria.
        Science. 2015; 350: 830-834
        • Wiest R.
        • Rath H.C.
        Gastrointestinal disorders of the critically ill. Bacterial translocation in the gut.
        Best Pract Res Clin Gastroenterol. 2003; 17: 397-425
        • Delacroix D.L.
        • Hodgson H.J.
        • McPherson A.
        • Dive C.
        • Vaerman J.P.
        Selective transport of polymeric immunoglobulin A in bile. Quantitative relationships of monomeric and polymeric immunoglobulin A, immunoglobulin M, and other proteins in serum, bile, and saliva.
        J Clin Invest. 1982; 70: 230-241
        • Macpherson A.J.
        • Slack E.
        The functional interactions of commensal bacteria with intestinal secretory IgA.
        Curr Opin Gastroenterol. 2007; 23: 673-678
        • Bollinger R.R.
        • Everett M.L.
        • Palestrant D.
        • Love S.D.
        • Lin S.S.
        • Parker W.
        Human secretory immunoglobulin A may contribute to biofilm formation in the gut.
        Immunology. 2003; 109: 580-587
        • Palm N.W.
        • de Zoete M.R.
        • Cullen T.W.
        • et al.
        Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease.
        Cell. 2014; 158: 1000-1010
        • Moro-Sibilot L.
        • Blanc P.
        • Taillardet M.
        • et al.
        Mouse and human liver contain immunoglobulin a-secreting cells originating from Peyer’s patches and directed against intestinal antigens.
        Gastroenterology. 2016; 151: 311-323
        • Fukuda Y.
        • Imoto M.
        • Hayakawa T.
        Serum levels of secretory immunoglobulin A in liver disease.
        Am J Gastroenterol. 1985; 80: 237-241
        • van de Wiel A.
        • Schuurman H.J.
        • van Riessen D.
        • et al.
        Characteristics of IgA deposits in liver and skin of patients with liver disease.
        Am J Clin Pathol. 1986; 86: 724-730
        • Ridlon J.M.
        • Harris S.C.
        • Bhowmik S.
        • Kang D.J.
        • Hylemon P.B.
        Consequences of bile salt biotransformations by intestinal bacteria.
        Gut Microbes. 2016; 7: 22-39
        • Yoshimoto S.
        • Loo T.M.
        • Atarashi K.
        • et al.
        Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome.
        Nature. 2013; 499: 97-101
        • Bourzac K.
        Microbiome: the bacterial tightrope.
        Nature. 2014; 516: S14-S16
        • Wiest R.
        • Lawson M.
        • Geuking M.
        Pathological bacterial translocation in liver cirrhosis.
        J Hepatol. 2014; 60: 197-209
        • Ridlon J.M.
        • Alves J.M.
        • Hylemon P.B.
        • Bajaj J.S.
        Cirrhosis, bile acids and gut microbiota: unraveling a complex relationship.
        Gut Microbes. 2013; 4: 382-387
        • Tilg H.
        • Cani P.D.
        • Mayer E.A.
        Gut microbiome and liver diseases.
        Gut. 2016;
        • Boursier J.
        • Mueller O.
        • Barret M.
        • et al.
        The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota.
        Hepatology. 2016; 63: 764-775
        • Llopis M.
        • Cassard A.M.
        • Wrzosek L.
        • et al.
        Intestinal microbiota contributes to individual susceptibility to alcoholic liver disease.
        Gut. 2016; 65: 830-839
      4. Puneet Puri, Faridoddin Mirshahi, Suthat Liangpunsakul, Naga P. Chalasani DWC, Vijay Shah, Patrick S. Kamath et al. Alcoholic hepatitis and disease severity are associated with distinct shifts in fecal microbial ecology. Hepatology 2016; 64: A1212.

        • Sabino J.
        • Vieira-Silva S.
        • Machiels K.
        • et al.
        Primary sclerosing cholangitis is characterised by intestinal dysbiosis independent from IBD.
        Gut. 2016; 65: 1681-1689
        • Bajaj J.S.
        • Betrapally N.S.
        • Gillevet P.M.
        Decompensated cirrhosis and microbiome interpretation.
        Nature. 2015; 525: E1-E2
        • Bajaj J.S.
        • Betrapally N.S.
        • Hylemon P.B.
        • et al.
        Salivary microbiota reflects changes in gut microbiota in cirrhosis with hepatic encephalopathy.
        Hepatology. 2015; 62: 1260-1271
        • Lachar J.
        • Bajaj J.S.
        Changes in the microbiome in cirrhosis and relationship to complications: hepatic encephalopathy, spontaneous bacterial peritonitis, and sepsis.
        Semin Liver Dis. 2016; 36: 327-330
        • Noriho Iida E.M.
        • Kaneko Shuichi
        Inflammatory and carcinogenic features of gut microbiota in hepatocellular carcinoma patients.
        Hepatology. 2016; 64
      5. Puneet Puri FM, Kalyani Daita, Robert Vincent, Suthat Liangpunsakul, David W., Crabb, Patrick S. Kamath et al. Quantitative and qualitative changes in the circulating microbiome are associated with the development and severity of alcoholic hepatitis. Hepatology 2016; 64.

        • Raj Ashok S.
        • Shanahan Erin
        • Fletcher Linda M.
        • Cuong Tran
        • Bhat Purnima
        • Morrison Mark
        Increased small intestinal permeability in chronic liver disease is associated with reduced abundance of Faecalibacterium prausnitzii in the terminal ileum mucosa.
        Hepatology. 2016; 64: A687
      6. Krag A. GALAXY: Gut-and-liver axis in alcoholic liver fibrosis. EU-Horizon-20/20; livergalaxyeu.

        • Bajaj J.S.
        • Fagan A.
        • Sikaroodi M.
        • et al.
        Liver transplant modulates gut microbial dysbiosis and cognitive function in cirrhosis.
        Liver Transplant. 2017;
      7. Mathurin Philippe M, University Hospital, Lille; NCT02281929. Efficacy of Antibiotic Therapy in Severe Alcoholic Hepatitis Treated With Prednisolone (AntibioCor).

      8. Perttu Sahlman M, Helsinki UHo. Randomised Open-label Multicenter Study Evaluating Ciprofloxacin in Severe Alcoholic Hepatitis. NCT02326103; 2017.

        • Rahimpour S.
        • Nasiri-Toosi M.
        • Khalili H.
        • Ebrahimi-Daryani N.
        • Nouri-Taromlou M.K.
        • Azizi Z.
        A triple blinded, randomized, placebo-controlled clinical trial to evaluate the efficacy and safety of oral vancomycin in primary sclerosing cholangitis: a pilot study.
        J Gastrointest Liver Dis. 2016; 25: 457-464
      9. Ochsner Medical Center NO, Louisiana, United States, 70121, Contact: Shamita Shah M–ssoo. Vancomycin treatment in recurrent PSC in liver transplant patients. NCT03046901; 2017.

      10. Etienne Sokal M, PhD, Saint-Luc Cu. Overlap syndrome and PSC: evaluating role of gut microflora and its identification with antibiotics in children. NCT03069976; 2017.

        • Jiang Z.D.
        • Ke S.
        • Dupont H.L.
        Rifaximin-induced alteration of virulence of diarrhoea-producing Escherichia coli and Shigella sonnei.
        Int J Antimicrob Agents. 2010; 35: 278-281
        • Kang D.J.
        • Kakiyama G.
        • Betrapally N.S.
        • et al.
        Rifaximin exerts beneficial effects independent of its ability to alter microbiota composition.
        Clin Transl Gastroenterol. 2016; 7: e187
        • Gangarapu V.
        • Ince A.T.
        • Baysal B.
        • et al.
        Efficacy of rifaximin on circulating endotoxins and cytokines in patients with nonalcoholic fatty liver disease.
        Eur J Gastroenterol Hepatol. 2015; 27: 840-845
        • Bass N.M.
        • Mullen K.D.
        • Sanyal A.
        • et al.
        Rifaximin treatment in hepatic encephalopathy.
        N Engl J Med. 2010; 362: 1071-1081
        • Ahluwalia V.
        • Wade J.B.
        • Heuman D.M.
        • et al.
        Enhancement of functional connectivity, working memory and inhibitory control on multi-modal brain MR imaging with Rifaximin in Cirrhosis: implications for the gut-liver-brain axis.
        Metab Brain Dis. 2014; 29: 1017-1025
        • Bajaj J.S.
        • Heuman D.M.
        • Wade J.B.
        • et al.
        Rifaximin improves driving simulator performance in a randomized trial of patients with minimal hepatic encephalopathy.
        Gastroenterology. 2011; 140 (e1): 478-487
        • Bajaj J.S.
        • Heuman D.M.
        • Sanyal A.J.
        • et al.
        Modulation of the metabiome by rifaximin in patients with cirrhosis and minimal hepatic encephalopathy.
        PLoS One. 2013; 8: e60042
        • Dupont H.L.H.T.
        • Sanyal A.J.
        • Wolf R.A.
        • Mullen K.D.
        Genomic characterization of stool microbiota with rifaximin monotherapy versus lactulose combination therapy for prevention of overt hepatic encephalopathy (HE) recurrence.
        Hepatology. 2016; 63: 720A-721A
        • Soldi S.
        • Vasileiadis S.
        • Uggeri F.
        • et al.
        Modulation of the gut microbiota composition by rifaximin in non-constipated irritable bowel syndrome patients: a molecular approach.
        Clin Exp Gastroenterol. 2015; 8: 309-325
        • Bajaj J.S.F.S.
        • Chalasani N.
        • Diaz E.
        • Kayali Z.
        • Kang R.
        • Bortey E.
        • et al.
        Oral rifaximin soluble solid dispersion immediate-release 40 mg prevents development of cirrhosis-related complications: a phase 2, randomized, multicenter, double-blind, placebo-controlled trial.
        Hepatology. 2016; 63: 1027A
      11. Hospital Universitari Vall d‘Hebron Research Institute N. Effects of rifaximin in patients with acute alcoholic hepatitis (RIFA-AAH).

      12. Mansoura University E, NCT02884037. Rifaximin modify the pathogenesis of non-alcoholic-fatty-liver-disease (NAFLD).

      13. Shawcross DKsCHNT, NCT02019784. Randomised controlled trial of mechanistic effects of rifaximin in cirrhosis and chronic hepatic encephalopathy (RIFSYS).

      14. Wei-Fen Xie MDoG, Changzheng Hospital, Second Military Medical University, Shanghai. Rifaximin reduces the complications of decompensated cirrhosis: a randomized controlled trial. NCT02190357; 2017.

      15. Nina Kimer M, Department of Gastroenterology CUHH. Intestinal decontamination with rifaximin. The inflammatory and circulatory state in patients with cirrhosis. NCT01769040; 2016.

      16. Christophe Bureau MP, University Hospital T. Rifaximin vs placebo for the prevention of encephalopathy in patients treated by TIPS (PRPET). NCT02016196; 2017.

      17. Thierry THEVENOT M, PhD. Two strategies of primary prophylaxis of spontaneous bacterial peritonitis in severe cirrhotic patients with ascites (ProPILARifax). NCT03069131; 2016.

      18. Shiyao CHEN MD, Zhongshan Hospital FU, Shanghai. Rifaximin in patients with gastroesophageal variceal bleeding (RFXM). NCT02991612; 2016.

      19. Enoch Bortey PD, Valeant pharmaceuticals international I. Efficacy, safety, and pharmacokinetics of rifaximin in subjects with severe hepatic impairment and hepatic encephalopathy. NCT01846663; 2017.

      20. Nasser H Mousa M, Mansoura, Egypt rifaximin modify the pathogenesis of non-alcoholic fatty liver disease (NAFLD). NCT02884037; 2017.

      21. RWTH Aachen University; Aachen G, 52074, Contact: Ulf Neumann P, MD [email protected] Administration of rifaximin to improve liver regeneration and outcome following major liver resection (ARROW). NCT02555293; 2017.

        • Fernandez J.
        • Tandon P.
        • Mensa J.
        • Garcia-Tsao G.
        Antibiotic prophylaxis in cirrhosis: Good and bad.
        Hepatology. 2016; 63: 2019-2031
        • Letexier D.
        • Diraison F.
        • Beylot M.
        Addition of inulin to a moderately high-carbohydrate diet reduces hepatic lipogenesis and plasma triacylglycerol concentrations in humans.
        Am J Clin Nutr. 2003; 77: 559-564
        • Tarantino G.
        • Finelli C.
        Systematic review on intervention with prebiotics/probiotics in patients with obesity-related nonalcoholic fatty liver disease.
        Future Microbiol. 2015; 10: 889-902
        • Lambert J.E.
        • Parnell J.A.
        • Eksteen B.
        • et al.
        Gut microbiota manipulation with prebiotics in patients with non-alcoholic fatty liver disease: a randomized controlled trial protocol.
        BMC Gastroenterol. 2015; 15: 169
      22. Yaakov Maor KMC. Prebiotics in patients with non-alcoholic liver disease. NCT02642172; 2017.

        • Saez-Lara M.J.
        • Robles-Sanchez C.
        • Ruiz-Ojeda F.J.
        • Plaza-Diaz J.
        • Gil A.
        Effects of probiotics and synbiotics on obesity, insulin resistance syndrome, type 2 diabetes and non-alcoholic fatty liver disease: a review of human clinical trials.
        Int J Mol Sci. 2016; 17
        • Ma Y.Y.
        • Li L.
        • Yu C.H.
        • Shen Z.
        • Chen L.H.
        • Li Y.M.
        Effects of probiotics on nonalcoholic fatty liver disease: a meta-analysis.
        World J Gastroenterol. 2013; 19: 6911-6918
        • Sepideh A.
        • Karim P.
        • Hossein A.
        • et al.
        Effects of multistrain probiotic supplementation on glycemic and inflammatory indices in patients with nonalcoholic fatty liver disease: a double-blind randomized clinical trial.
        J Am Coll Nutr. 2016; 35: 500-505
      23. Ajay K. Duseja, Manu Mehta, Shruti, Chhabra S, Satyavati Rana, Ashim Das, Siddhartha, Datta Gupta et al. Probiotic VSL#3 improves liver histology in patients with nonalcoholic fatty liver disease – A proof of concept study. Hepatology 2016; 64: 596A.

      24. Shiri Sherf Dagan, Shira Zelber-Sagi, Gili Zilberman-Schapira, Muriel Webb, Andrei Keidar, Asnat, Raziel et al;. Probiotics do not improve hepatic outcomes after Laparoscopic Sleeve Gastrectomy surgery: a randomized clinical trial. Hepatology 2016; 64.

      25. David W. Orr, Rinki Murphy. Probiotic supplementation after very low calorie diet does not aid improvement of the metabolic syndrome or maintenance of weight loss post liver transplant. a randomised double-blind placebo controlled trial. Hepatology 2016; 64: 113A.

      26. Maor KMC, Israel, NCT 02642172. Prebiotics in patients with non-alcoholic liver disease. 2016.

      27. Reimer R.; University of Calgary CIoHRN. Prebiotic Fibre Supplementation and Gut Microbiota in Non-alcoholic Fatty Liver Disease; 2016.

      28. CD Byrne NIfHR, UK, NCT 0168064. Investigation of synbiotic treatment in NAFLD (INSYTE); 2016.

      29. G.Z. Port FUoHSoPA, NCT02764047. Probiotics in the treatment of NAFLD; 2016.

      30. ANgel Gil UG, Spain, NCT 02972567. Evaluation of the effects of L. Reuteri strain on markers of inflammation, cardiovascular risk and fatty liver disease (PROSIR); 2016.

        • Hill C.
        • Scott K.
        • Klaenhammer T.R.
        • Quigley E.
        • Sanders M.E.
        Probiotic nomenclature matters.
        Gut Microbes. 2016; 7: 1-2
        • Han S.H.
        • Suk K.T.
        • Kim D.J.
        • et al.
        Effects of probiotics (cultured Lactobacillus subtilis/Streptococcus faecium) in the treatment of alcoholic hepatitis: randomized-controlled multicenter study.
        Eur J Gastroenterol Hepatol. 2015; 27: 1300-1306
      31. Ki Tae Suk CSHH, NCT02335632. Effect of Probiotics on Gut-Liver Axis of Alcoholic Hepatitis. NCT02335632; 2016.

        • Vleggaar F.P.
        • Monkelbaan J.F.
        • van Erpecum K.J.
        Probiotics in primary sclerosing cholangitis: a randomized placebo-controlled crossover pilot study.
        Eur J Gastroenterol Hepatol. 2008; 20: 688-692
        • Vrieze A.
        • Van Nood E.
        • Holleman F.
        • et al.
        Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome.
        Gastroenterology. 2012; 143 (e7): 913-916
        • Saab S.
        • Suraweera D.
        • Au J.
        • Saab E.G.
        • Alper T.S.
        • Tong M.J.
        Probiotics are helpful in hepatic encephalopathy: a meta-analysis of randomized trials.
        Liver Int. 2016; 36: 986-993
        • Agrawal A.
        • Sharma B.C.
        • Sharma P.
        • Sarin S.K.
        Secondary prophylaxis of hepatic encephalopathy in cirrhosis: an open-label, randomized controlled trial of lactulose, probiotics, and no therapy.
        Am J Gastroenterol. 2012; 107: 1043-1050
        • Dhiman R.K.
        • Rana B.
        • Agrawal S.
        • et al.
        Probiotic VSL#3 reduces liver disease severity and hospitalization in patients with cirrhosis: a randomized, controlled trial.
        Gastroenterology. 2014; 147 (e3): 1327-1337
        • Horvath A.
        • Leber B.
        • Schmerboeck B.
        • et al.
        Randomised clinical trial: the effects of a multispecies probiotic vs. placebo on innate immune function, bacterial translocation and gut permeability in patients with cirrhosis.
        Aliment Pharmacol Ther. 2016; 44: 926-935
        • Liu Q.
        • Duan Z.P.
        • Ha D.K.
        • Bengmark S.
        • Kurtovic J.
        • Riordan S.M.
        Synbiotic modulation of gut flora: effect on minimal hepatic encephalopathy in patients with cirrhosis.
        Hepatology. 2004; 39: 1441-1449
        • Jayakumar S.
        • Carbonneau M.
        • Hotte N.
        • et al.
        VSL#3 (R) probiotic therapy does not reduce portal pressures in patients with decompensated cirrhosis.
        Liver Int. 2013; 33: 1470-1477
        • Gupta N.
        • Kumar A.
        • Sharma P.
        • Garg V.
        • Sharma B.C.
        • Sarin S.K.
        Effects of the adjunctive probiotic VSL#3 on portal haemodynamics in patients with cirrhosis and large varices: a randomized trial.
        Liver Int. 2013; 33: 1148-1157
        • Sawas T.
        • Al Halabi S.
        • Hernaez R.
        • Carey W.D.
        • Cho W.K.
        Patients receiving prebiotics and probiotics before liver transplantation develop fewer infections than controls: a systematic review and meta-analysis.
        Clin Gastroenterol Hepatol. 2015; 13: 1567-1574
      32. Grat M et al., Clinical nutrition (Edinburgh, Scotland); 2017.

      33. Cleber Kruel DHdCdPA. Effect of Synbiotic on Postoperative Complications After Liver Transplantation. NCT02938871; 2016.

      34. Huet E.; University Hopsital Rouen N. Influence of probiotics administration before liver resection in liver disease (LIPROCES). NCT02021253; 2016.

        • Meighani Alireza
        • Salgia Reena
        Successful outcomes of fecal microbiota transplantation in patients with chronic liver disease.
        Hepatology. 2016; 64: 1017A
      35. Bajaj J.S. et al., Hepatology; 2017.

      36. Cyriac A. Philips, Apurva Pande, Kapil, D. Jamwal, Guresh Kumar, Shvetank, Sharma, Rakhi Maiwall, et al. Fecal microbiota transplantation (FMT) improves outcome and survival in steroid ineligible severe alcoholic hepatitis–A randomized control trial (NCT 02458079). Hepatology 2016; 64: 706A.

      37. Jasmohan S. Bajaj, Andrew Fagan, Edith A. Gavis, Eric Liu, Jane Cox, Raffi Kheradman, et al. Fecal microbiota transplant using a precision medicine approach is safe, associated with lower hospitalization risk and improved cognitive function in recurrent hepatic encephalopathy. ILC2017-RS-2127; 2017.

      38. Abbo L. FMT for MDRO Colonization in Liver Transplantation (FMT). NihGov 2016; NCT02816437.

      39. Shawcross D. Trial of Faecal Microbiota Transplantation in Cirrhosis (PROFIT). NihGov 2016; NCT02862249.

      40. Institute of Liver and Biliary Sciences I. Fecal Microbiota Therapy versus Standard Therapy in decompensated NASH related Cirrhosis: A Randomized Controlled Trial. NihGov 2016; NCT02868164.

      41. Silverman M. Transplantation of microbes for treatment of metabolic syndrome and NAFLD (FMT). NihGov 2016; NCT02496390.

      42. Kittichai Promrat L. Fecal microbiota transplantation (FMT) in nonalcoholic steatohepatitis (NASH). A Pilot Study. NihGov 2016; NCT02469272.

      43. Joshua Korzenik BaWH. Fecal Microbiota Transplantation for the Treatment of Primary Sclerosing Cholangitis. NihGov 2016; NCT 02424175.

        • Sterns R.H.
        • Grieff M.
        • Bernstein P.L.
        Treatment of hyperkalemia: something old, something new.
        Kidney Int. 2016; 89: 546-554
        • Di Padova C.
        • Tritapepe R.
        • Rovagnati P.
        • Rossetti S.
        Double-blind placebo-controlled clinical trial of microporous cholestyramine in the treatment of intra- and extra-hepatic cholestasis: relationship between itching and serum bile acids.
        Methods Find Exp Clin Pharmacol. 1984; 6: 773-776
        • Schulman G.
        • Berl T.
        • Beck G.J.
        • et al.
        The effects of AST-120 on chronic kidney disease progression in the United States of America: a post hoc subgroup analysis of randomized controlled trials.
        BMC Nephrol. 2016; 17: 141
        • Bosoi C.R.
        • Parent-Robitaille C.
        • Anderson K.
        • Tremblay M.
        • Rose C.F.
        AST-120 (spherical carbon adsorbent) lowers ammonia levels and attenuates brain edema in bile duct-ligated rats.
        Hepatology. 2011; 53: 1995-2002
        • Bajaj J.S.S.M.
        • Chojkier M.
        • Balart L.
        • Sherker A.H.
        • VEmuru R.
        • et al.
        AST-120 in covert hepatic encephalopathy: Results of the ASTUTE trial.
        J Hepatol. 2013; 58: S84
      44. McNaughtan J SJ, Mouralidarane A, Sandeman S, Howell C, Kozynchenko O, Tennison S, Mikhalovsky S, Davies N, Oben J, Mookerjee R, Jalan R. Biological effects of oral nanoporous carbon in bile duct ligated rats. Gut 2012; 61(A124).

      45. Macnaughtan J, Sawhney R, Oben J, Davies N, Mookerjee R, et al. Oral carbon therapy is associated with a selective modulation of the microbiome in cirrhotic rats which is associated with a significant reduction in inflammatory activation. Gut 2015; 64:(PTH-095).

      46. Macnaughtan J, Mouralidarane A, Saneman S, Howell C, Mikhalovsky S, Kozynchenko O, et al. Effects of oral nanoporous carbon therapy in leptin null mice as a model of non-alcoholic steatohepatitis. Gut 2012; 61(A125).


        • Wahlstrom A.
        • Sayin S.I.
        • Marschall H.U.
        • Backhed F.
        Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism.
        Cell Metab. 2016; 24: 41-50
        • van Nierop F.S.
        • Scheltema M.J.
        • Eggink H.M.
        • et al.
        Clinical relevance of the bile acid receptor TGR5 in metabolism.
        Lancet Diabetes Endocrinol. 2016;
        • Zhu Y.
        • Li F.
        • Guo G.L.
        Tissue-specific function of farnesoid X receptor in liver and intestine.
        Pharmacol Res. 2011; 63: 259-265
        • Wahlstrom A.
        • Al-Dury S.
        • Casselbrant A.
        • Bergentall M.
        • Stahlman M.
        • Olsson L.
        • et al.
        Decreased intestinal glucose absorption in healthy volunteers treated with the FXR agonist obeticholic acid.
        Hepatology. 2016; 64: 185
        • Nevens F.
        • Andreone P.
        • Mazzella G.
        • et al.
        A placebo-controlled trial of obeticholic acid in primary biliary cholangitis.
        N Engl J Med. 2016; 375: 631-643
      48. Neuschwander-Tetri BA, Loomba R, Sanyal AJ, et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet (London, England) 2015; 385(9972): 956–65.

        • Nicholes K.
        • Guillet S.
        • Tomlinson E.
        • et al.
        A mouse model of hepatocellular carcinoma: ectopic expression of fibroblast growth factor 19 in skeletal muscle of transgenic mice.
        Am J Pathol. 2002; 160: 2295-2307
      49. Cathi Sciacca Vice President Clinical Operations IPI. Randomized global phase 3 study to evaluate the impact on NASH with fibrosis of obeticholic acid treatment (REGENERATE). NCT02548351; 2017.

      50. Chalasani NP, (NIAAA) NIoAAaA, Pharmaceuticals I. Trial of obeticholic acid in patients with moderately severe alcoholic hepatitis (AH) (TREAT). NCT02039219; 2017.

      51. Pharmaceuticals I. Obeticholic Acid (OCA) in primary sclerosing cholangitis (PSC) (AESOP). NCT02177136; 2017.

      52. Stefan Traussnigg CK, Emina Halilbasic, Christian Rechling HH, Petra E. Steindl-Munda, Ghazaleh Gouya MW, Martin Hornberger, et al. Efficacy and safety of the non-steroidal farnesoid X receptor agonist PX-104 in patients with non-alcoholic fatty liver disease (NAFLD). Hepatology 2016; 64:536 A.

      53. Dorothy French JTL, Henry Liu, Erik G. Huntzicker, Constantine S. Djedjos, Robert P. Myers, William, Watkins;. Pharmacodynamic effects of the non-steroidal farnesoid X receptor (FXR) agonist GS-9674 in high fat, high cholesterol diet fed cynomolgus monkeys. Hepatology 2016; 64: 71A.

        • Liles J.K.
        • Karnik S.
        • Hambruch E.
        • Kremoser C.
        • Birkel M.
        • Watkins W.J.
        • et al.
        FxR agonism by GS-9674 decreases steatosis and fibrosis in a murine model of NASH.
        J Hepatol. 2016; 64
      54. Schwabl PH, Supper, P, Burnet, M, Peck-Radovasvljevic, M, Reiberger, T et al. The non-steroidal FxR-agonist Gs-9674 reduces fibrosis and ameliorates portal hypertension in a rat Nash-model. J Hepatol 2016; 64(S165–S166).

      55. Constantine S. Djedjos BK, Andrew Billin, John Gosink,, Qinghua Song RS, Krystyna Grycz, Jonna Weston,, Mani Subramanian WW, Robert P. Myers;. Pharmacodynamic Effects of the Oral, Non-Steroidal Farnesoid X Receptor Agonist GS-9674 in Healthy Volunteers. Hepatology 2016; 64:543A.

      56. Brian Kirby CSD, Joanne Birkebak, Qinghua, Song KG, Jonna Weston, Mani Subramanian, William, Watkins RPM, Anita Mathias. Evaluation of the Safety and Pharmacokinetic Effects of the Oral, Non-Steroidal Farnesoid X Receptor Agonist GS-9674 in Healthy Volunteers. Hepatology 2016; 64: 574A.

      57. Rob Myers MGS. Study in Healthy Volunteers to evaluate the safety, tolerability, pharmacokinetics and pharmacodynamics of GS-9674, and the effect of food on GS-9674 pharmacokinetics and pharmacodynamics. NCT02654002; 2016.

      58. Sciences GSDG. Evaluating the safety, tolerability, and efficacy of GS-9674 in participants with nonalcoholic steatohepatitis (NASH). NCT02854605; 2017.

      59. Sciences GSDG. safety, tolerability, and efficacy of selonsertib, GS-0976, and GS-9674 in adults with nonalcoholic steatohepatitis (NASH). NCT02781584; 2017.

      60. Rohit Loomba EL, Parvez S. Mantry, Saumya Jayakumar, Stephen H. Caldwell HA, Anna Mae Diehl, Constantine S. Djedjos CJ, et al. Afdhal10 MRC. GS-4997, an Inhibitor of apoptosis signal-regulating kinase (ASK1), alone or in combination with simtuzumab for the treatment of nonalcoholic steatohepatitis (NASH): a randomized, phase 2 trial. Hepatology 2016; 64(LB-3).

      61. Xiaoxin Wang AL, Suman Ranjit, Dong Wang, Yuhuan Luo DJO, James McManaman, et al. The FXR/TGR5 dual agonist INT-767 prevents and reverses Western diet-induced NASH and modulates major lipid metabolic pathways in mice. Hepatology 2016; 64(A1528).

      62. Roth J, Skovgaard S, Rigbolt K, Jelsing J, Vrang N, Young M. The FXR/TGR5 dual agonist INT-767 reduces NAFLD activity score and fibrosis stage and improves plasma and hepatic lipid profiles in the GUBRA-AMLN mouse model of diet-induced and biopsy-confirmed nonalcoholic steatohepatitis (NASH). Hepatology 2016; 64(752 A).

        • Guo C.
        • Chen W.D.
        • Wang Y.D.
        TGR5, not only a metabolic regulator.
        Front Physiol. 2016; 7: 646
        • van Nierop F.S.
        • Scheltema M.J.
        • Eggink H.M.
        • et al.
        Clinical relevance of the bile acid receptor TGR5 in metabolism.
        Lancet Diabetes Endocrinol. 2017; 5: 224-233
      63. Pharmaceuticals N. Safety, Tolerability and Efficacy Study of 12 Weeks LJN452 Treatment in NASH Patients (FLIGHT-FXR). NCT02855164; 2017.

      64. Michael K. Badman1 SD, Bryan Laffitte, Marc Decristofaro, TsuHan Lin JC, John F. Reilly, Lloyd Klickstein. First-in-Human experience with LJN452, an orally available non-bile acid FXR agonist, demonstrates potent activation of FXR in healthy subjects. Hepatology 2016; 64: 16A.

      65. Melissa Palmer LJ, Debra Silberg, Caleb Bliss, Patrick, Martin;. Volixibat, a minimally absorbed, oral, apical sodium-dependent bile acid transporter (ASBT) inhibitor, increases bile acid excretion, reduces serum lipids, is safe and tolerable in overweight and obese subjects, a population characteristic of NASH. Hepatology 2016; 64: 574A.

      66. Patrick Martin MS. Safety and Tolerability Study of SHP626 in Overweight and Obese Adults. NCT02287779; 2017.

      67. Shire SP. Volixibat (SHP626) in the Treatment of Adults With Nonalcoholic Steatohepatitis (NASH). NCT02787304; 2017.

        • Safadi R.
        • Konikoff F.M.
        • Mahamid M.
        • et al.
        The fatty acid-bile acid conjugate Aramchol reduces liver fat content in patients with nonalcoholic fatty liver disease.
        Clin Gastroenterol Hepatol. 2014; 12 (e1): 2085-2091
      68. Vlad Ratziu M, PhD, Paris. PoHatUPeMCatHPSMUi. A clinical trial to evaluate the efficacy and safety of two aramchol doses versus placebo in patients with NASH (Aramchol_005). NCT02279524; 2017.

        • Degirolamo C.
        • Rainaldi S.
        • Bovenga F.
        • Murzilli S.
        • Moschetta A.
        Microbiota modification with probiotics induces hepatic bile acid synthesis via downregulation of the Fxr-Fgf15 axis in mice.
        Cell Rep. 2014; 7: 12-18
        • Fang S.
        • Suh J.M.
        • Reilly S.M.
        • et al.
        Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance.
        Nat Med. 2015; 21: 159-165
        • Verbeke L.
        • Farre R.
        • Verbinnen B.
        • et al.
        The FXR agonist obeticholic acid prevents gut barrier dysfunction and bacterial translocation in cholestatic rats.
        Am J Pathol. 2015; 185: 409-419
        • Verbeke L.
        • Mannaerts I.
        • Schierwagen R.
        • et al.
        FXR agonist obeticholic acid reduces hepatic inflammation and fibrosis in a rat model of toxic cirrhosis.
        Sci Rep. 2016; 6: 33453
        • Ubeda M.
        • Lario M.
        • Munoz L.
        • et al.
        Obeticholic acid reduces bacterial translocation and inhibits intestinal inflammation in cirrhotic rats.
        J Hepatol. 2016; 64: 1049-1057
        • Inagaki T.
        • Moschetta A.
        • Lee Y.K.
        • et al.
        Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor.
        Proc Natl Acad Sci U S A. 2006; 103: 3920-3925
        • Gadaleta R.M.
        • van Erpecum K.J.
        • Oldenburg B.
        • et al.
        Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease.
        Gut. 2011; 60: 463-472
      69. Tolbol SSV, Knudsen, HK Erichsen, MN Kristiansen, J Jelsing, N Vrang, M Feigh. The GLP-1 analogue, liraglutide, reduces NAFLD Activity Score and Fibrosis Stage and improves metabolic parameters in a diet-induced obese mouse model of biopsy-confirmed nonalcoholic steatohepatitis (NASH). Hepatology 64 2016; 64(782A).

        • de Mesquita F.C.
        • et al.
        Sci Rep. 2017; 7: 3255
      70. Armstrong MJ, Gaunt P, Aithal GP, et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet (London, England) 2016; 387: 679–90.

      71. Wolfgang E. Schmidt PDR-UB. Effects of exenatide (Byetta®) on liver function in patients with nonalcoholic steatohepatitis (NASH). NCT01208649; 2010.

      72. Joan Khoo Joo Ching CSC, Changi General Hospital. Comparing effects of liraglutide and bariatric surgery on weight loss, liver function, body composition, insulin resistance, endothelial function and biomarkers of non-alcoholic steatohepatitis (NASH) in obese asian adults (CGH-LiNASH). NCT02654665; 2016.

      73. Jianping Weng D, Third affiliated hospital, Sun Yat-Sen University. Efficacy Study of Liraglutide vs.Sitagliptin vs. Glargine on Liver Fat in T2DM Subjects (LIGHT-ON). NCT02147925; 2017.

      74. Fudan University C. Exenatide compared with insulin glargine to change liver fat content in type 2 diabetes. NCT02303730; 2016.

      75. BV. Effect of liraglutide on fatty liver content and lipoprotein metabolism (LIRA-NAFLD/LIP). NCT02721888; 2016.

        • Cui J.
        • Philo L.
        • Nguyen P.
        • et al.
        Sitagliptin vs. placebo for non-alcoholic fatty liver disease: A randomized controlled trial.
        J Hepatol. 2016; 65: 369-376
      76. Unzueta A, Portillo-Sanchez, P. Biernacki, D. Suman, A. Weber, M. Cusi K. Postprandial hyperglycemia and hyperinsulinemia are associated with advanced fibrosis in patients with diabetes and NASH. Hepatology 2016; 64: 35.

        • Knop F.K.
        Bile-induced secretion of glucagon-like peptide-1: pathophysiological implications in type 2 diabetes?.
        Am J Physiol Endocrinol Metab. 2010; 299: E10-E13
        • Ohki T.
        • Isogawa A.
        • Toda N.
        • Tagawa K.
        Clin Drug Invest. 2016; 36: 313-319
      77. Shireene Vethakkan UoM. he Effect of Empagliflozin on NAFLD in Asian Patients With Type 2 Diabetes. NCT02964715; 2016.

      78. e.V TDDF. Effects of Empagliflozin on Liver Fat Content, Energy Metabolism and Body Composition in Patients With Type 2 Diabetes (EmLiFa). NCT02637973; 2017.

        • Arab J.P.
        • Karpen S.J.
        • Dawson P.A.
        • Arrese M.
        • Trauner M.
        Bile acids and nonalcoholic fatty liver disease: Molecular insights and therapeutic perspectives.
        Hepatology. 2017; 65: 350-362
        • Zhou M.
        • Luo J.
        • Chen M.
        • et al.
        Mice species-specific control of hepatocarcinogenesis and metabolism by FGF19/FGF15.
        J Hepatol. 2017; 66: 1182-1192
      79. Lei Ling MZ, Marc Learned, Stephen J. Rossi, Hui Tian, DePaoli; AM. Human FGF19 but not NGM282, an Engineered variant of FGF19, causes hepatocellular carcinoma (HCC) in a diet-induced mouse model of non-alcoholic steatohepatitis (NASH). Hepatology 2016; 64(LB-19).

      80. Mayo MJ, Roberts SK, Arnold H, Hassanein TIB, Leggett A, Bate JP, et al Thompson. NGM282, A novel variant of FGF-19, demonstrates biologic activity in primary biliary cirrhosis patients with an incomplete response to ursodeoxycholic acid: results of a phase 2 multicenter, randomized, double blinded, placebo controlled trial. Hepatology 2015; 62; 1: 106.

      81. Stephen J Rossi PNB, Inc., Phase 2 study of NGM282 in patients with primary sclerosing cholangitis. NCT02704364; 2016.

      82. Stephen J Rossi PNB, Inc. study of NGM282 in patients with nonalcoholic steatohepatitis. NCT02443116; 2016.

      83. Krupinski NM, Kozhich A, Chiney M, Morin P, Christian R. Effects of BMS-986036 (pegylated fibroblast growth factor 21) on hepatic steatosis and fibrosis in a mouse model of nonalcoholic steatohepatitis. Hepatology 2016; 64: 1501.

      84. Charles ED, Hompesch M, Luo Y, Wu, CK Christian R. A phase 1 study of BMS-986036 (Pegylated FGF21) in Healthy Obese Subjects. Hepatology 2016; 64: 1082.

      85. Wu CKEDC, A. Bui, R. Christian, M. Abu Tarif. Phase 1 study of BMS-986171 (Pegylated FGF21) in Healthy Obese Subjects. Hepatology 2016; 64(564A): 1118.

      86. E. D. Charles BAT, Y. Luo, C. K. Wu, R. Christian;. A Phase 2 Study of BMS-986036 (Pegylated FGF21) in Obese Adults with Type 2 Diabetes and a High Prevalence of Fatty Liver. Hepatology 2016; 64(17A): 33.

      87. Squibb r-M. A Study of BMS-986036 in Subjects With Non-Alcoholic Steatohepatitis (NASH). NCT02413372; 2017.

      88. Jun Hwan Kim HNH, Hyun Ho Choi, Dohoon Kim, Tae Wang Kim SL, Minji Seo, Mi Kyeong Ju, Ju-Young Park BHC, et al. YH25724, a novel long-acting GLP-1/FGF21 dual agonist improves hepatic steatosis, inflammation and fibrosis in nonalcoholic steatohepatitis (NASH) animal models. Hepatology 2016; 64.

      89. Michelle L. Beaton JG, Christopher Rhodes, Lutz Jermutus, Anish Konkar JT. MEDI0382, a dual GLP-1/glucagon receptor agonist, exerts beneficial effects on mitochondrial content and function in primary hepatocytes from lean and NASH mice. Hepatology 2016; 64.

      90. J. Trevaskis MLB, M. Bednarek, D. C. Hornigold, J. Naylor, A. Collinson, S. Skovgaard Veidal, A. Nygaard Madsen, P. Ambery, S. Henderson, M. P. Coghlan, J. Grimsby, C. Rhodes, L. Jermutus, A. Konkar.. The Dual Glucagon-Like Peptide-1 (GLP-1)/Glucagon Receptor Agonist MEDI0382 Improves Metabolic and Hepatic Indices of NASH in Mice.. Hepatology 2016; 64: 1505.

        • Dietrich P.
        • Moleda L.
        • Kees F.
        • et al.
        Dysbalance in sympathetic neurotransmitter release and action in cirrhotic rats: impact of exogenous neuropeptide Y.
        J Hepatol. 2013; 58: 254-261
        • Henriksen J.H.
        • Moller S.
        • Ring-Larsen H.
        • Christensen N.J.
        The sympathetic nervous system in liver disease.
        J Hepatol. 1998; 29: 328-341
        • de Franchis R.
        Expanding consensus in portal hypertension: Report of the Baveno VI Consensus Workshop: Stratifying risk and individualizing care for portal hypertension.
        J Hepatol. 2015; 63: 743-752
        • Perez-Paramo M.
        • Munoz J.
        • Albillos A.
        • et al.
        Effect of propranolol on the factors promoting bacterial translocation in cirrhotic rats with ascites.
        Hepatology. 2000; 31: 43-48
        • Reiberger T.
        • Ferlitsch A.
        • Payer B.A.
        • et al.
        Non-selective betablocker therapy decreases intestinal permeability and serum levels of LBP and IL-6 in patients with cirrhosis.
        J Hepatol. 2013; 58: 911-921
        • Thiele M.
        • Wiest R.
        • Gluud L.L.
        • Albillos A.
        • Krag A.
        Can non-selective beta-blockers prevent hepatocellular carcinoma in patients with cirrhosis?.
        Med Hypotheses. 2013; 81: 871-874
        • Mookerjee R.P.
        • Pavesi M.
        • Thomsen K.L.
        • et al.
        Treatment with non-selective beta blockers is associated with reduced severity of systemic inflammation and improved survival of patients with acute-on-chronic liver failure.
        J Hepatol. 2016; 64: 574-582
        • Thiele M.
        • Albillos A.
        • Abazi R.
        • Wiest R.
        • Gluud L.L.
        • Krag A.
        Non-selective beta-blockers may reduce risk of hepatocellular carcinoma: a meta-analysis of randomized trials.
        Liver Int. 2015; 35: 2009-2016
        • Sigala B.
        • McKee C.
        • Soeda J.
        • et al.
        Sympathetic nervous system catecholamines and neuropeptide Y neurotransmitters are upregulated in human NAFLD and modulate the fibrogenic function of hepatic stellate cells.
        PLoS One. 2013; 8: e72928
        • von Montfort C.
        • Beier J.I.
        • Guo L.
        • Kaiser J.P.
        • Arteel G.E.
        Contribution of the sympathetic hormone epinephrine to the sensitizing effect of ethanol on LPS-induced liver damage in mice.
        Am J Physiol Gastrointest Liver Physiol. 2008; 294: G1227-G1234
        • Browning K.N.
        • Verheijden S.
        • Boeckxstaens G.E.
        The vagus nerve in appetite regulation, mood, and intestinal inflammation.
        Gastroenterology. 2016; 152: 730-744
        • Cheadle G.A.
        • Costantini T.W.
        • Bansal V.
        • Eliceiri B.P.
        • Coimbra R.
        Cholinergic signaling in the gut: a novel mechanism of barrier protection through activation of enteric glia cells.
        Surg Infect. 2014; 15: 387-393
        • Bockx I.
        • Verdrengh K.
        • Vander Elst I.
        • et al.
        High-frequency vagus nerve stimulation improves portal hypertension in cirrhotic rats.
        Gut. 2012; 61: 604-612
      91. Cynthia Aranow M, Investigator, Northwell Health. Using a Transcutaneous Electrical Auricular Stimulator to Harness the Cholinergic Anti-Inflammatory Pathway (TEACAP). NCT02910973; 2016.

      92. Geert D'Haens MD, Ph.D., (AMC-UvA) AMC-UvA. Long Term Observational Study of a Vagal Nerve Stimulation Device in Crohn's Disease. NCT02951650; 2016.

      93. Radwan KASSIR M, Etienne CdS. Preoperative Treatment With Noninvasive Intra-auricular Vagus Nerve Stimulation Pending Bariatric Surgery (OBESITE). NCT02648191; 2016.

        • Madrid A.M.
        • Hurtado C.
        • Venegas M.
        • Cumsille F.
        • Defilippi C.
        Long-Term treatment with cisapride and antibiotics in liver cirrhosis: effect on small intestinal motility, bacterial overgrowth, and liver function.
        Am J Gastroenterol. 2001; 96: 1251-1255
        • Garcia-Tsao G.
        Prokinetics reduce bacterial translocation in cirrhosis: will sweeping the gut keep the fluid clean?.
        Gastroenterology. 2001; 120: 314-316
        • Tsuchida Y.
        • Hatao F.
        • Fujisawa M.
        • et al.
        Neuronal stimulation with 5-hydroxytryptamine 4 receptor induces anti-inflammatory actions via alpha7nACh receptors on muscularis macrophages associated with postoperative ileus.
        Gut. 2011; 60: 638-647
        • Takaki M.
        • Goto K.
        • Kawahara I.
        The 5-hydroxytryptamine 4 receptor agonist-induced actions and enteric neurogenesis in the gut.
        J Neurogastroenterol Motil. 2014; 20: 17-30
        • Yano J.M.
        • Yu K.
        • Donaldson G.P.
        • et al.
        Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis.
        Cell. 2015; 161: 264-276
        • Jang J.H.
        • Rickenbacher A.
        • Humar B.
        • et al.
        Serotonin protects mouse liver from cholestatic injury by decreasing bile salt pool after bile duct ligation.
        Hepatology. 2012; 56: 209-218
        • Nocito A.
        • Dahm F.
        • Jochum W.
        • et al.
        Serotonin mediates oxidative stress and mitochondrial toxicity in a murine model of nonalcoholic steatohepatitis.
        Gastroenterology. 2007; 133: 608-618
        • Mann D.A.
        • Oakley F.
        Serotonin paracrine signaling in tissue fibrosis.
        Biochim Biophys Acta. 2013; 1832: 905-910
        • Ebrahimkhani M.R.
        • Oakley F.
        • Murphy L.B.
        • et al.
        Stimulating healthy tissue regeneration by targeting the 5-HT(2)B receptor in chronic liver disease.
        Nat Med. 2011; 17: 1668-1673
        • Starlinger P.
        • Assinger A.
        • Haegele S.
        • et al.
        Evidence for serotonin as a relevant inducer of liver regeneration after liver resection in humans.
        Hepatology. 2014; 60: 257-266
      94. Patrick Starlinger M, PhD, Vienna MU. Platelets in Liver Regeneration. NCT02113059; 2016.

        • Soll C.
        • Jang J.H.
        • Riener M.O.
        • et al.
        Serotonin promotes tumor growth in human hepatocellular cancer.
        Hepatology. 2010; 51: 1244-1254
        • Fatima S.
        • Shi X.
        • Lin Z.
        • et al.
        5-Hydroxytryptamine promotes hepatocellular carcinoma proliferation by influencing beta-catenin.
        Mol Oncol. 2016; 10: 195-212
      95. Padickakudy RH, S.; Offensperger, F.; Pereyra, D.; Ohlberger, L.; Assinger, A.; Fleischmann, E.; Brostjan, C.; Gruenberger, T.; Starlinger, P.;. Intra-platelet serotonin and oncologic outcome. ECMO 2015; 51, Suppl 3: S43–S4.

        • Fried M.
        • Yumuk V.
        • Oppert J.M.
        • et al.
        Interdisciplinary European Guidelines on metabolic and bariatric surgery.
        Obes Facts. 2013; 6: 449-468
        • Ekstedt M.
        • Hagstrom H.
        • Nasr P.
        • et al.
        Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up.
        Hepatology. 2015; 61: 1547-1554
        • Zhang H.
        • DiBaise J.K.
        • Zuccolo A.
        • et al.
        Human gut microbiota in obesity and after gastric bypass.
        Proc Natl Acad Sci U S A. 2009; 106: 2365-2370
        • Catoi A.F.
        • Parvu A.
        • Muresan A.
        • Busetto L.
        Metabolic mechanisms in obesity and type 2 diabetes: insights from bariatric/metabolic surgery.
        Obes Facts. 2015; 8: 350-363
      96. Lassailly G, Caiazzo R, Buob D, et al. Bariatric Surgery Reduces Features of Nonalcoholic Steatohepatitis in Morbidly Obese Patients. Gastroenterology 2015; 149(2): 379–88; quiz e15–6.

        • Marchesi J.R.
        • Adams D.H.
        • Fava F.
        • et al.
        The gut microbiota and host health: a new clinical frontier.
        Gut. 2016; 65: 330-339
        • Gerhard G.S.
        • Still C.D.
        • DiStefano J.K.
        High false-negative rate for nonalcoholic steatohepatitis in extreme obesity.
        Gastroenterology. 2016; 150: 283-284
      97. Manco M et al., The Journal of pediatrics 180, 31–37.e32 (2017).

      98. Barros F; Ministry of Health Brazil N. Impact of Bariatric Surgery on the Evolution of Nonalcoholic Fatty Liver Disease: a Comparative Clinical Trial Between Sleeve Gastrectomy and Gastric Bypass. 2016. NCT02394353.

      99. NCT02390973 LB. Surgery Versus Best Medical Management for the Long Term Remission of Type 2 Diabetes and Related Diseases (REMISSION). 2016.

      100. Vi Nguyen JL, Paul Cordero, Gilberto Alejandro S. Cuevas,, Mai Khatib JAO. Intra-Gastric Balloon (IGB): an endoscopic treatment option for obesity and NAFLD. Hepatology 2016; 64: A1125.

      101. Oranit Cohen-Ezra GS-L, Alon Lang, Yeroham Kleinbaum YI, Sima Katsherginsky, Keren, Tsaraf ZBA. Improvement in non-invasive hepatic parameters of nonalcoholic fatty liver disease in obese uncontrolled type 2 diabetes mellitus patients who underwent endoscopic duodenal-jejunal bypass liner (Endobarrier) implantation. Hepatology 2016; 64.

      102. van Baar ACG, Academic Medical Center, Amsterdam, the Netherlands, J. Devière DoG, Erasme University Hospital, Brussels, Belgium, G. Costamagna DoDE, Policlinico Gemelli, Catholic University of Rome, Rome, Italy, et al. A single endoscopic duodenal mucosal resurfacing procedure exerts a sustained improvement in hepatic transaminase levels in a cohort of type 2 diabetes patients. Hepatology 2016; 64(LB-34): A557.

      103. Robert Dobbins M, PhD, Inc C. Safety and efficacy of solithromycin in the treatment of nonalcoholic steatohepatitis without cirrhosis. NCT02510599; 2017.

      104. Mehmet Mutlu M, Karadeniz Technical University. Effects of probiotics on neonatal hyperbilirubinemia. NCT02807246; 2016.

      105. Graz MUo. Influence of Probiotics on Infections in Cirrhosis (PIC). NCT01607528; 2016.

      106. Wojciech M Marlicz MD, Ph.D. Pomeranian medical university szczecin. evaluation of probiotics in the treatment of portal hypertension. NCT00831337; 2016.

      107. Sciences G. Pharmacokinetics and pharmacodynamics of GS-9674 in adults with normal and impaired hepatic function. NCT02808312; 2017.

      108. Director GS, Sciences G. Safety, Tolerability, and efficacy of GS-9674 in adults with primary sclerosing cholangitis without cirrhosis (PSC-Phase 2). NCT02943460; 2017.

      109. Kenneth Cusi MD, University of Florida. Adding exenatide to insulin therapy for patients with type 2 diabetes and non-alcoholic fatty liver disease. NCT01006889; 2016.

      110. Melanie Cree-Green UC. Liver and fat regulation in overweight adolescent girls (APPLE). NCT02157974; 2017.